Adaptive sliding mode control of a magnetic levitation three-point bending device

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Mengyi Ren, K. Oka
{"title":"Adaptive sliding mode control of a magnetic levitation three-point bending device","authors":"Mengyi Ren, K. Oka","doi":"10.3233/jae-220135","DOIUrl":null,"url":null,"abstract":"This paper presents a non-contact three-point bending device based on magnetic levitation technology, in which a specimen can be bent while being levitated. As the levitated object needs to withstand an increasing bending load in levitated state, this requires the control system to have a strong robustness. Therefore, a centralized sliding mode controller (CSMC) was proposed for the levitation. Furthermore, based on CSMC, an adaptive centralized sliding mode controller with the bending load as scheduling variable (ACSMC), which is the novelty of this paper, were proposed to deal with the disturbance caused by the bending load. Simulation results demonstrated that ACSMC has good robustness to three typical bending loads, i.e., ramp load, sine load, step load. Finally, experiments were conducted and experiment results demonstrated that ACSMC allows the device to withstand ramp bending load, sine bending load and step bending load up to 50 N.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"65 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-220135","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a non-contact three-point bending device based on magnetic levitation technology, in which a specimen can be bent while being levitated. As the levitated object needs to withstand an increasing bending load in levitated state, this requires the control system to have a strong robustness. Therefore, a centralized sliding mode controller (CSMC) was proposed for the levitation. Furthermore, based on CSMC, an adaptive centralized sliding mode controller with the bending load as scheduling variable (ACSMC), which is the novelty of this paper, were proposed to deal with the disturbance caused by the bending load. Simulation results demonstrated that ACSMC has good robustness to three typical bending loads, i.e., ramp load, sine load, step load. Finally, experiments were conducted and experiment results demonstrated that ACSMC allows the device to withstand ramp bending load, sine bending load and step bending load up to 50 N.
磁悬浮三点弯曲装置的自适应滑模控制
提出了一种基于磁悬浮技术的非接触式三点弯曲装置,该装置可以使试样在悬浮状态下弯曲。由于悬浮物体在悬浮状态下需要承受越来越大的弯曲载荷,这就要求控制系统具有较强的鲁棒性。为此,提出了一种集中滑模控制器(CSMC)。在此基础上,提出了一种以弯曲负荷为调度变量的自适应集中滑模控制器(ACSMC)来处理弯曲负荷引起的扰动,这是本文的新颖之处。仿真结果表明,ACSMC对斜坡载荷、正弦载荷、阶跃载荷三种典型弯曲载荷具有良好的鲁棒性。最后进行了实验,实验结果表明,ACSMC可以承受高达50 N的斜坡弯曲载荷、正弦弯曲载荷和阶跃弯曲载荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
4.6 months
期刊介绍: The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are: Physics and mechanics of electromagnetic materials and devices Computational electromagnetics in materials and devices Applications of electromagnetic fields and materials The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics. The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信