Tıagabıne Incorporated Polymerıc Mıcroneedles: Formulatıon And Characterızatıon Studıes

Ebru Başaran, Kadir Aykaç
{"title":"Tıagabıne Incorporated Polymerıc Mıcroneedles: Formulatıon And Characterızatıon Studıes","authors":"Ebru Başaran, Kadir Aykaç","doi":"10.2174/2452271606666230427091330","DOIUrl":null,"url":null,"abstract":"The oral route is the primary route for both acute and chronic treatment of epilepsy. However, lack of oral access during the seizures and high drug resistance limit the anti-epileptogenic effects of most antiepileptic drugs. Therefore, alternative routes and novel drug delivery systems are required. In this study, polymeric microneedles were formulated and characterized for possible intranasal administration of Tiagabine (TIA) in order to overcome the blood-brain barrier (BBB).\n\n\n\nIn our study, carboxymethyl cellulose (CMC) and Eudragit® S 100 (ES100) based polymeric microneedles were formulated by micro-molding SEM, DSC, XRD, FT-IR, 1H-NMR, in vitro release, and texture analyses were performed. For the stability analyses, formulations were kept at 25 °C ± 2 °C (60 ± 5% Relative Humidity; RH), 40 °C ± 2 °C (75 ± 5% RH) and 5 °C ± 3 °C for six months.\n\n\n\nAnalysis results revealed that robust microneedles were formulated successfully by micromolding method with adjustable needle lengths. Depending on the polymer type, sustained TIA releases up to 72 hours were achieved. Structural integrities were maintained at all storage conditions during the storage period of six months.\n\n\n\nTIA-loaded microneedles have the potential with less invasive properties, even with small amounts of TIA, through the unconventional nasal route for effective treatment of epilepsy.","PeriodicalId":10768,"journal":{"name":"Current Applied Polymer Science","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2452271606666230427091330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The oral route is the primary route for both acute and chronic treatment of epilepsy. However, lack of oral access during the seizures and high drug resistance limit the anti-epileptogenic effects of most antiepileptic drugs. Therefore, alternative routes and novel drug delivery systems are required. In this study, polymeric microneedles were formulated and characterized for possible intranasal administration of Tiagabine (TIA) in order to overcome the blood-brain barrier (BBB). In our study, carboxymethyl cellulose (CMC) and Eudragit® S 100 (ES100) based polymeric microneedles were formulated by micro-molding SEM, DSC, XRD, FT-IR, 1H-NMR, in vitro release, and texture analyses were performed. For the stability analyses, formulations were kept at 25 °C ± 2 °C (60 ± 5% Relative Humidity; RH), 40 °C ± 2 °C (75 ± 5% RH) and 5 °C ± 3 °C for six months. Analysis results revealed that robust microneedles were formulated successfully by micromolding method with adjustable needle lengths. Depending on the polymer type, sustained TIA releases up to 72 hours were achieved. Structural integrities were maintained at all storage conditions during the storage period of six months. TIA-loaded microneedles have the potential with less invasive properties, even with small amounts of TIA, through the unconventional nasal route for effective treatment of epilepsy.
口服途径是急性和慢性癫痫治疗的主要途径。然而,在癫痫发作期间缺乏口服途径和高耐药性限制了大多数抗癫痫药物的抗癫痫作用。因此,需要替代途径和新的给药系统。在这项研究中,聚合物微针被配制和表征,可能用于替加滨(TIA)鼻内给药,以克服血脑屏障(BBB)。在我们的研究中,羧甲基纤维素(CMC)和Eudragit®S100 (ES100)为基础的聚合物微针通过微成型SEM, DSC, XRD, FT-IR, 1H-NMR,体外释放和结构分析进行配制。为了进行稳定性分析,将配方保存在25°C±2°C(60±5%相对湿度;RH)、40°C±2°C(75±5% RH)和5°C±3°C,持续6个月。分析结果表明,采用针长可调的微成型方法成功制备了坚固的微针。根据聚合物类型的不同,可以实现长达72小时的持续TIA释放。在6个月的贮存期内,在各种贮存条件下均保持结构完整。负载TIA的微针具有侵入性较小的潜力,即使是少量的TIA,也可以通过非常规的鼻腔途径有效治疗癫痫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信