A Neural Network to Decipher Organic Electrochemical Transistors’ Multivariate Responses for Cation Recognition

Sébastien Pecqueur, D. Vuillaume, Ž. Crljen, Ivor Lončarić, V. Zlatić
{"title":"A Neural Network to Decipher Organic Electrochemical Transistors’ Multivariate Responses for Cation Recognition","authors":"Sébastien Pecqueur, D. Vuillaume, Ž. Crljen, Ivor Lončarić, V. Zlatić","doi":"10.3390/electronicmat4020007","DOIUrl":null,"url":null,"abstract":"Extracting relevant data from real-world experiments is often challenging with intrinsic materials and device property dispersion, such as in organic electronics. However, multivariate data analysis can often be a mean to circumvent this and to extract more information when larger datasets are used with learning algorithms instead of physical models. Here, we report on identifying relevant information descriptors for organic electrochemical transistors (OECTs) to classify aqueous electrolytes by ionic composition. Applying periodical gate pulses at different voltage magnitudes, we extracted a reduced number of nonredundant descriptors from the rich drain-current dynamics, which provide enough information to cluster electrochemical data by principal component analysis between Ca2+-, K+-, and Na+-rich electrolytes. With six current values obtained at the appropriate time domain of the device charge/discharge transient, one can identify the cationic identity of a locally probed transient current with only a single micrometric device. Applied to OECT-based neural sensors, this analysis demonstrates the capability for a single nonselective device to retrieve the rich ionic identity of neural activity at the scale of each neuron individually when learning algorithms are applied to the device physics.","PeriodicalId":18610,"journal":{"name":"Modern Electronic Materials","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronicmat4020007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Extracting relevant data from real-world experiments is often challenging with intrinsic materials and device property dispersion, such as in organic electronics. However, multivariate data analysis can often be a mean to circumvent this and to extract more information when larger datasets are used with learning algorithms instead of physical models. Here, we report on identifying relevant information descriptors for organic electrochemical transistors (OECTs) to classify aqueous electrolytes by ionic composition. Applying periodical gate pulses at different voltage magnitudes, we extracted a reduced number of nonredundant descriptors from the rich drain-current dynamics, which provide enough information to cluster electrochemical data by principal component analysis between Ca2+-, K+-, and Na+-rich electrolytes. With six current values obtained at the appropriate time domain of the device charge/discharge transient, one can identify the cationic identity of a locally probed transient current with only a single micrometric device. Applied to OECT-based neural sensors, this analysis demonstrates the capability for a single nonselective device to retrieve the rich ionic identity of neural activity at the scale of each neuron individually when learning algorithms are applied to the device physics.
用于阳离子识别的有机电化学晶体管多元响应神经网络解译
从真实世界的实验中提取相关数据通常具有固有材料和器件特性分散的挑战性,例如在有机电子学中。然而,当更大的数据集与学习算法一起使用而不是物理模型时,多元数据分析通常可以规避这一点,并提取更多信息。在这里,我们报告了识别有机电化学晶体管(OECTs)的相关信息描述符,以通过离子组成对水性电解质进行分类。应用不同电压量级的周期性门脉冲,我们从丰富的漏极电流动力学中提取了减少数量的非冗余描述符,这些描述符提供了足够的信息,通过主成分分析在Ca2+-, K+-和Na+富电解质之间聚类电化学数据。在器件充电/放电瞬态的适当时域内获得六个电流值,人们可以仅用一个微米器件识别局部探测的瞬态电流的阳离子特性。应用于基于oect的神经传感器,该分析表明,当学习算法应用于设备物理时,单个非选择性设备能够在每个神经元的尺度上检索神经活动的丰富离子身份。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信