{"title":"Hysteresis modeling and experimental validation of a magnetorheological damper","authors":"X. Bai, Peng Chen, Li-Jun Qian, An-Ding Zhu","doi":"10.1117/12.2084119","DOIUrl":null,"url":null,"abstract":"In this paper, for modeling the MR dampers, based on the phenomenological model, a normalized phenomenological model is derived through incorporating a “normalization” concept and a restructured model is proposed and realized also with incorporation of the “normalization” concept. In order to demonstrate, a multi-islands genetic algorithm (GA) is employed to identify the parameters of the restructured model, the normalized phenomenological model as well as the phenomenological model. The research results indicate that, as compared with the phenomenological model and the normalized phenomenological model, (1) the restructured model not only can effectively decrease the number of the model parameters and reduce the complexity of the model, but also can describe the nonlinear hysteretic behavior of MR dampers more accurately, and (2) the normalized phenomenological model can improve the model efficiency as compared with the phenomenological model, although not as good as the restructured model.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/12.2084119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, for modeling the MR dampers, based on the phenomenological model, a normalized phenomenological model is derived through incorporating a “normalization” concept and a restructured model is proposed and realized also with incorporation of the “normalization” concept. In order to demonstrate, a multi-islands genetic algorithm (GA) is employed to identify the parameters of the restructured model, the normalized phenomenological model as well as the phenomenological model. The research results indicate that, as compared with the phenomenological model and the normalized phenomenological model, (1) the restructured model not only can effectively decrease the number of the model parameters and reduce the complexity of the model, but also can describe the nonlinear hysteretic behavior of MR dampers more accurately, and (2) the normalized phenomenological model can improve the model efficiency as compared with the phenomenological model, although not as good as the restructured model.