The Minimum Number of Spanning Trees in Regular Multigraphs

IF 0.7 4区 数学 Q2 MATHEMATICS
J. Pekárek, Jean-Sébastien Sereni, Zelealem B. Yilma
{"title":"The Minimum Number of Spanning Trees in Regular Multigraphs","authors":"J. Pekárek, Jean-Sébastien Sereni, Zelealem B. Yilma","doi":"10.37236/10911","DOIUrl":null,"url":null,"abstract":"\n \n \nIn a recent article, Bogdanowicz determines the minimum number of spanning trees a connected cubic multigraph on a fixed number of vertices can have and identifies the unique graph that attains this minimum value. He conjectures that a generalized form of this construction, which we here call a padded paddle graph, would be extremal for d-regular multigraphs where $d\\geq 5$ is odd. \nWe prove that, indeed, the padded paddle minimises the number of spanning trees, but this is true only when the number of vertices, $n$, is greater than $(9d+6)/8$. We show that a different graph, which we here call the padded cycle, is optimal for $n<(9d+6)/8$ . This fully determines the $d$-regular multi-graphs minimising the number of spanning trees for odd values of $d$. \nWe employ the approach we develop to also consider and completely solve the even degree case. Here, the parity of $n$ plays a major role and we show that, apart from a handful of irregular cases when both $d$ and $n$ are small, the unique extremal graphs are padded cycles when $n$ is even and a different family, which we call fish graphs, when $n$ is odd. \n \n \n","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"39 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/10911","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a recent article, Bogdanowicz determines the minimum number of spanning trees a connected cubic multigraph on a fixed number of vertices can have and identifies the unique graph that attains this minimum value. He conjectures that a generalized form of this construction, which we here call a padded paddle graph, would be extremal for d-regular multigraphs where $d\geq 5$ is odd. We prove that, indeed, the padded paddle minimises the number of spanning trees, but this is true only when the number of vertices, $n$, is greater than $(9d+6)/8$. We show that a different graph, which we here call the padded cycle, is optimal for $n<(9d+6)/8$ . This fully determines the $d$-regular multi-graphs minimising the number of spanning trees for odd values of $d$. We employ the approach we develop to also consider and completely solve the even degree case. Here, the parity of $n$ plays a major role and we show that, apart from a handful of irregular cases when both $d$ and $n$ are small, the unique extremal graphs are padded cycles when $n$ is even and a different family, which we call fish graphs, when $n$ is odd.
正则多图中生成树的最小个数
在最近的一篇文章中,Bogdanowicz确定了固定数量顶点上的连通三次多图可以拥有的最小生成树数,并确定了达到这个最小值的唯一图。他推测这种构造的广义形式,我们称之为填充桨图,对于$d\geq 5$为奇的d正则多图是极值的。我们证明,填充桨确实使生成树的数量最小化,但这只有在顶点的数量$n$大于$(9d+6)/8$时才成立。我们展示了一个不同的图,我们称之为填充循环,对于$n<(9d+6)/8$是最优的。这完全决定了$d$ -正则多图最小化奇数值的生成树的数量$d$。我们使用我们开发的方法来考虑并完全解决偶数次的情况。这里,$n$的奇偶性起了主要作用,我们表明,除了$d$和$n$都很小的少数不规则情况外,当$n$是偶数时,唯一极值图是填充循环,当$n$是奇数时,我们称之为鱼图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信