A comparative study on the photodegradation of methyl orange, methylene blue using Fe2O3, Mn2O3, and Fe2O3 – Mn2O3 nanomaterials

Mai Nguyen Vu Ngoc, Hung Le Bao, Chuc Pham Ngoc, Lim Duong Thi, Bac Nguyen Quang, Lam Tran Dai
{"title":"A comparative study on the photodegradation of methyl orange, methylene blue using Fe2O3, Mn2O3, and Fe2O3 – Mn2O3 nanomaterials","authors":"Mai Nguyen Vu Ngoc, Hung Le Bao, Chuc Pham Ngoc, Lim Duong Thi, Bac Nguyen Quang, Lam Tran Dai","doi":"10.51316/jca.2022.051","DOIUrl":null,"url":null,"abstract":"In this study, photocatalysis was applied to degrade methyl orange (MO) and methylene blue (MB) pollutants using nanoparticles (i.e., Fe2O3, Mn2O3, Fe2O3 – Mn2O3). The results were shown that MB was relatively easier to decompose than MO. At the same initial concentration of 10 ppm, all nanomaterials need 120 min to degrade MB from 74.4%-96.5%, while after 180 min, MO is only degraded by 50%-95%. For both pollutants, the mixed nano-oxides of Fe2O3-Mn2O3 presented a superior treatment efficiency compared to the two single oxides (i.e., Fe2O3 and Mn2O3). The degradation efficiency was recorded with the order Fe2O3-Mn2O3 Fe2O3 Mn2O3. During photodecomposition, formed intermediates due to the incomplete reaction of pollutions and hydroxyl radical were investigated using the ions trap technique.","PeriodicalId":23507,"journal":{"name":"Vietnam Journal of Catalysis and Adsorption","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Catalysis and Adsorption","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51316/jca.2022.051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, photocatalysis was applied to degrade methyl orange (MO) and methylene blue (MB) pollutants using nanoparticles (i.e., Fe2O3, Mn2O3, Fe2O3 – Mn2O3). The results were shown that MB was relatively easier to decompose than MO. At the same initial concentration of 10 ppm, all nanomaterials need 120 min to degrade MB from 74.4%-96.5%, while after 180 min, MO is only degraded by 50%-95%. For both pollutants, the mixed nano-oxides of Fe2O3-Mn2O3 presented a superior treatment efficiency compared to the two single oxides (i.e., Fe2O3 and Mn2O3). The degradation efficiency was recorded with the order Fe2O3-Mn2O3 Fe2O3 Mn2O3. During photodecomposition, formed intermediates due to the incomplete reaction of pollutions and hydroxyl radical were investigated using the ions trap technique.
Fe2O3、Mn2O3和Fe2O3 - Mn2O3纳米材料光降解甲基橙、亚甲基蓝的比较研究
本研究采用纳米颗粒(即Fe2O3、Mn2O3、Fe2O3 - Mn2O3)进行光催化降解甲基橙(MO)和亚甲基蓝(MB)污染物。结果表明,MB比MO更容易分解,在相同初始浓度为10 ppm时,所有纳米材料降解MB的速率为74.4% ~ 96.5%,需要120 min,而180 min后,MO的降解速率仅为50% ~ 95%。对于两种污染物,Fe2O3-Mn2O3混合纳米氧化物的处理效率均优于Fe2O3和Mn2O3两种单一氧化物。以Fe2O3-Mn2O3 Fe2O3-Mn2O3的顺序记录降解效率。利用离子阱技术研究了光分解过程中污染物与羟基自由基不完全反应形成的中间体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信