{"title":"Enabling automated engineering’s project progress measurement by using data flow models and digital twins","authors":"Helena Ebel, T. Riedelsheimer, R. Stark","doi":"10.1177/18479790211033697","DOIUrl":null,"url":null,"abstract":"A significant challenge of managing successful engineering projects is to know their status at any time. This paper describes a concept of automated project progress measurement based on data flow models, digital twins, and machine learning (ML) algorithms. The approach integrates information from previous projects by considering historical data using ML algorithms and current unfinished artifacts to determine the degree of completion. The information required to measure the progress of engineering activities is extracted from engineering artifacts and subsequently analyzed and interpreted according to the project’s progress. Data flow models of the engineering process help understand the context of the analyzed artifacts. The use of digital twins makes it possible to connect plan data with actual data during the completion of the engineering project.","PeriodicalId":45882,"journal":{"name":"International Journal of Engineering Business Management","volume":"18 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Business Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/18479790211033697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 4
Abstract
A significant challenge of managing successful engineering projects is to know their status at any time. This paper describes a concept of automated project progress measurement based on data flow models, digital twins, and machine learning (ML) algorithms. The approach integrates information from previous projects by considering historical data using ML algorithms and current unfinished artifacts to determine the degree of completion. The information required to measure the progress of engineering activities is extracted from engineering artifacts and subsequently analyzed and interpreted according to the project’s progress. Data flow models of the engineering process help understand the context of the analyzed artifacts. The use of digital twins makes it possible to connect plan data with actual data during the completion of the engineering project.
期刊介绍:
The International Journal of Engineering Business Management (IJEBM) is an international, peer-reviewed, open access scientific journal that aims to promote an integrated and multidisciplinary approach to engineering, business and management. The journal focuses on issues related to the design, development and implementation of new methodologies and technologies that contribute to strategic and operational improvements of organizations within the contemporary global business environment. IJEBM encourages a systematic and holistic view in order to ensure an integrated and economically, socially and environmentally friendly approach to management of new technologies in business. It aims to be a world-class research platform for academics, managers, and professionals to publish scholarly research in the global arena. All submitted articles considered suitable for the International Journal of Engineering Business Management are subjected to rigorous peer review to ensure the highest levels of quality. The review process is carried out as quickly as possible to minimize any delays in the online publication of articles. Topics of interest include, but are not limited to: -Competitive product design and innovation -Operations and manufacturing strategy -Knowledge management and knowledge innovation -Information and decision support systems -Radio Frequency Identification -Wireless Sensor Networks -Industrial engineering for business improvement -Logistics engineering and transportation -Modeling and simulation of industrial and business systems -Quality management and Six Sigma -Automation of industrial processes and systems -Manufacturing performance and productivity measurement -Supply Chain Management and the virtual enterprise network -Environmental, legal and social aspects -Technology Capital and Financial Modelling -Engineering Economics and Investment Theory -Behavioural, Social and Political factors in Engineering