Fine-Grained Drug Interaction Extraction Based on Entity Pair Calibration and Pre-Training Model for Chinese Drug Instructions

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiaoliang Zhang, F. Gao, Lunsheng Zhou, Shenqi Jing, Zhongmin Wang, Yongqing Wang, Shumei Miao, Xin Zhang, Jianjun Guo, Tao Shan, Yun Liu
{"title":"Fine-Grained Drug Interaction Extraction Based on Entity Pair Calibration and Pre-Training Model for Chinese Drug Instructions","authors":"Xiaoliang Zhang, F. Gao, Lunsheng Zhou, Shenqi Jing, Zhongmin Wang, Yongqing Wang, Shumei Miao, Xin Zhang, Jianjun Guo, Tao Shan, Yun Liu","doi":"10.4018/ijswis.307908","DOIUrl":null,"url":null,"abstract":"Existing pharmaceutical information extraction research often focus on standalone entity or relationship identification tasks over drug instructions. There is a lack of a holistic solution for drug knowledge extraction. Moreover, current methods perform poorly in extracting fine-grained interaction relations from drug instructions. To solve these problems, this paper proposes an information extraction framework for drug instructions. The framework proposes deep learning models with fine-tuned pre-training models for entity recognition and relation extraction, in addition, it incorporates an novel entity pair calibration process to promote the performance for fine-grained relation extraction. The framework experiments on more than 60k Chinese drug description sentences from 4000 drug instructions. Empirical results show that the framework can successfully identify drug related entities (F1 ≥ 0.95) and their relations (F1 ≥ 0.83) from the realistic dataset, and the entity pair calibration plays an important role (~5% F1 score improvement) in extracting fine-grained relations.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"33 1","pages":"1-23"},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.307908","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Existing pharmaceutical information extraction research often focus on standalone entity or relationship identification tasks over drug instructions. There is a lack of a holistic solution for drug knowledge extraction. Moreover, current methods perform poorly in extracting fine-grained interaction relations from drug instructions. To solve these problems, this paper proposes an information extraction framework for drug instructions. The framework proposes deep learning models with fine-tuned pre-training models for entity recognition and relation extraction, in addition, it incorporates an novel entity pair calibration process to promote the performance for fine-grained relation extraction. The framework experiments on more than 60k Chinese drug description sentences from 4000 drug instructions. Empirical results show that the framework can successfully identify drug related entities (F1 ≥ 0.95) and their relations (F1 ≥ 0.83) from the realistic dataset, and the entity pair calibration plays an important role (~5% F1 score improvement) in extracting fine-grained relations.
基于实体对校准和药物说明书预训练模型的细粒度药物相互作用提取
现有的药物信息提取研究往往侧重于独立实体或关系识别任务,而不是药物说明书。药物知识提取缺乏一个整体的解决方案。此外,目前的方法在从药物说明书中提取细粒度相互作用关系方面表现不佳。为了解决这些问题,本文提出了一个药品说明书信息提取框架。该框架提出了具有微调预训练模型的深度学习模型,用于实体识别和关系提取,并结合了一种新的实体对校准过程,以提高细粒度关系提取的性能。该框架对4000种药物说明书中的6万多个中药描述句进行了实验。实证结果表明,该框架能够成功地从真实数据集中识别出药物相关实体(F1≥0.95)及其关系(F1≥0.83),实体对校准在提取细粒度关系方面发挥了重要作用(F1分数提高了~5%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信