Micromanipulation based on AFM: Probe tip selection

Shaorong Du, Yangmin Li
{"title":"Micromanipulation based on AFM: Probe tip selection","authors":"Shaorong Du, Yangmin Li","doi":"10.1109/NANO.2007.4601242","DOIUrl":null,"url":null,"abstract":"Micromanipulation based on AFM (atomic force microscope) has become popular in recent years. Since the AFM probe tip can have several shapes, how to select tip shape is discussed for micromanipulation in this paper. Based on the Hamaker hypotheses and the Lennard-Jones potential, interactions between probe and substrate surface are analyzed for three typical shape probe tips, namely, quadrilateral pyramid, cone, and paraboloid. Simulations are presented, and conclusion is obtained: a quadrilateral pyramid probe tip with small inclination between edge and axis is the best choice for micromanipulation based on AFM.","PeriodicalId":6415,"journal":{"name":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","volume":"54 1","pages":"506-510"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2007.4601242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Micromanipulation based on AFM (atomic force microscope) has become popular in recent years. Since the AFM probe tip can have several shapes, how to select tip shape is discussed for micromanipulation in this paper. Based on the Hamaker hypotheses and the Lennard-Jones potential, interactions between probe and substrate surface are analyzed for three typical shape probe tips, namely, quadrilateral pyramid, cone, and paraboloid. Simulations are presented, and conclusion is obtained: a quadrilateral pyramid probe tip with small inclination between edge and axis is the best choice for micromanipulation based on AFM.
基于AFM的显微操作:探针尖端选择
基于原子力显微镜(AFM)的显微操作近年来得到了广泛的应用。由于AFM探针的尖端可以有多种形状,本文讨论了如何选择尖端形状进行显微操作。基于Hamaker假设和Lennard-Jones势,分析了四棱锥型、锥型和抛物面型三种典型形状探针尖端与基底表面的相互作用。仿真结果表明:边轴倾角小的四边形金字塔探针尖是AFM显微操作的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信