A Deep Model for EEG Seizure Detection with Explainable AI using Connectivity Features

Hmayag Partamian, Fouad Khnaisser, Mohamad Mansour, Reem A. Mahmoud, H.M. Hajj, F. Karameh
{"title":"A Deep Model for EEG Seizure Detection with Explainable AI using Connectivity Features","authors":"Hmayag Partamian, Fouad Khnaisser, Mohamad Mansour, Reem A. Mahmoud, H.M. Hajj, F. Karameh","doi":"10.5121/ijbes.2021.8401","DOIUrl":null,"url":null,"abstract":"During seizures, different types of communication between different parts of the brain are characterized by many state of the art connectivity measures. We propose to employ a set of undirected (spectral matrix, the inverse of the spectral matrix, coherence, partial coherence, and phase-locking value) and directed features (directed coherence, the partial directed coherence) to detect seizures using a deep neural network. Taking our data as a sequence of ten sub-windows, an optimal deep sequence learning architecture using attention, CNN, BiLstm, and fully connected neural networks is designed to output the detection label and the relevance of the features. The relevance is computed using the weights of the model in the activation values of the receptive fields at a particular layer. The best model resulted in 97.03% accuracy using balanced MIT-BIH data subset. Finally, an analysis of the relevance of the features is reported.","PeriodicalId":73426,"journal":{"name":"International journal of biomedical engineering and clinical science","volume":"189 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of biomedical engineering and clinical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijbes.2021.8401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

During seizures, different types of communication between different parts of the brain are characterized by many state of the art connectivity measures. We propose to employ a set of undirected (spectral matrix, the inverse of the spectral matrix, coherence, partial coherence, and phase-locking value) and directed features (directed coherence, the partial directed coherence) to detect seizures using a deep neural network. Taking our data as a sequence of ten sub-windows, an optimal deep sequence learning architecture using attention, CNN, BiLstm, and fully connected neural networks is designed to output the detection label and the relevance of the features. The relevance is computed using the weights of the model in the activation values of the receptive fields at a particular layer. The best model resulted in 97.03% accuracy using balanced MIT-BIH data subset. Finally, an analysis of the relevance of the features is reported.
基于连接特征的可解释人工智能的脑电图发作检测深度模型
在癫痫发作期间,大脑不同部位之间的不同类型的交流被许多最先进的连接测量所表征。我们建议使用一组无向(谱矩阵,谱矩阵的逆,相干性,部分相干性和锁相值)和有向特征(有向相干性,部分有向相干性)来使用深度神经网络检测癫痫发作。将我们的数据作为十个子窗口的序列,设计了一个使用注意力、CNN、BiLstm和全连接神经网络的最优深度序列学习架构,以输出检测标签和特征的相关性。使用模型在特定层的接受野激活值中的权重来计算相关性。使用平衡的MIT-BIH数据子集,最佳模型的准确率为97.03%。最后,对特征的相关性进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信