{"title":"Cross-correlation based feature extraction from EMG signals for classification of neuro-muscular diseases","authors":"R. Bose, Kaniska Samanta, S. Chatterjee","doi":"10.1109/ICICPI.2016.7859710","DOIUrl":null,"url":null,"abstract":"In this contribution, classification of two main neuromuscular diseases namely Myopathy and Neuropathy and Healthy signals is performed using cross-correlation based feature extraction technique. For this purpose, cross-correlation of Healthy, Myopathy and Neuropathy disease EMG signal is done with a reference Healthy signal. Selective features like Hjorth, Adaptive Autoregressive and statistical features comprising mean, standard deviation and power are extracted from the cross-correlated signals. Support Vector Machine(SVM) and k-Nearest Neighbor(kNN) are the two classifiers used for this work. Highest classification accuracy of 100% is obtainedby SVM using Gaussian Radial Basis Function (RBF) as the kernel function with AAR and all combined features as the feature set. For kNN, k=4 yields best result of 100% accuracy using the combined feature set.","PeriodicalId":6501,"journal":{"name":"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)","volume":"32 1","pages":"241-245"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICPI.2016.7859710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
In this contribution, classification of two main neuromuscular diseases namely Myopathy and Neuropathy and Healthy signals is performed using cross-correlation based feature extraction technique. For this purpose, cross-correlation of Healthy, Myopathy and Neuropathy disease EMG signal is done with a reference Healthy signal. Selective features like Hjorth, Adaptive Autoregressive and statistical features comprising mean, standard deviation and power are extracted from the cross-correlated signals. Support Vector Machine(SVM) and k-Nearest Neighbor(kNN) are the two classifiers used for this work. Highest classification accuracy of 100% is obtainedby SVM using Gaussian Radial Basis Function (RBF) as the kernel function with AAR and all combined features as the feature set. For kNN, k=4 yields best result of 100% accuracy using the combined feature set.