Sharp bounds for decomposing graphs into edges and triangles

Adam Blumenthal, Bernard Lidick'y, Yanitsa Pehova, Florian Pfender, O. Pikhurko, Jan Volec
{"title":"Sharp bounds for decomposing graphs into edges and triangles","authors":"Adam Blumenthal, Bernard Lidick'y, Yanitsa Pehova, Florian Pfender, O. Pikhurko, Jan Volec","doi":"10.1017/S0963548320000358","DOIUrl":null,"url":null,"abstract":"Abstract For a real constant α, let $\\pi _3^\\alpha (G)$ be the minimum of twice the number of K2’s plus α times the number of K3’s over all edge decompositions of G into copies of K2 and K3, where Kr denotes the complete graph on r vertices. Let $\\pi _3^\\alpha (n)$ be the maximum of $\\pi _3^\\alpha (G)$ over all graphs G with n vertices. The extremal function $\\pi _3^3(n)$ was first studied by Győri and Tuza (Studia Sci. Math. Hungar. 22 (1987) 315–320). In recent progress on this problem, Král’, Lidický, Martins and Pehova (Combin. Probab. Comput. 28 (2019) 465–472) proved via flag algebras that$\\pi _3^3(n) \\le (1/2 + o(1)){n^2}$. We extend their result by determining the exact value of $\\pi _3^\\alpha (n)$ and the set of extremal graphs for all α and sufficiently large n. In particular, we show for α = 3 that Kn and the complete bipartite graph ${K_{\\lfloor n/2 \\rfloor,\\lceil n/2 \\rceil }}$ are the only possible extremal examples for large n.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548320000358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract For a real constant α, let $\pi _3^\alpha (G)$ be the minimum of twice the number of K2’s plus α times the number of K3’s over all edge decompositions of G into copies of K2 and K3, where Kr denotes the complete graph on r vertices. Let $\pi _3^\alpha (n)$ be the maximum of $\pi _3^\alpha (G)$ over all graphs G with n vertices. The extremal function $\pi _3^3(n)$ was first studied by Győri and Tuza (Studia Sci. Math. Hungar. 22 (1987) 315–320). In recent progress on this problem, Král’, Lidický, Martins and Pehova (Combin. Probab. Comput. 28 (2019) 465–472) proved via flag algebras that$\pi _3^3(n) \le (1/2 + o(1)){n^2}$. We extend their result by determining the exact value of $\pi _3^\alpha (n)$ and the set of extremal graphs for all α and sufficiently large n. In particular, we show for α = 3 that Kn and the complete bipartite graph ${K_{\lfloor n/2 \rfloor,\lceil n/2 \rceil }}$ are the only possible extremal examples for large n.
将图分解为边和三角形的锐利边界
对于一个实常数α,设$\pi _3^\alpha (G)$为K2的数目的两倍加上α乘以K3的数目在G分解成K2和K3副本的所有边上的最小值,其中Kr表示r个顶点上的完整图。设$\pi _3^\alpha (n)$为$\pi _3^\alpha (G)$在所有图G上n个顶点的最大值。末梢功能$\pi _3^3(n)$最早由Győri和Tuza (Studia Sci)研究。数学。匈牙利。22(1987)315-320)。在这个问题的最新进展中,Král ', Lidický,马丁斯和佩霍瓦(联合)。可能吧。Comput. 28(2019) 465-472)通过标志代数证明了$\pi _3^3(n) \le (1/2 + o(1)){n^2}$。我们通过确定$\pi _3^\alpha (n)$的精确值和对于所有α和足够大的n的极值图集来扩展他们的结果。特别是,我们证明了对于α = 3, Kn和完全二部图${K_{\lfloor n/2 \rfloor,\lceil n/2 \rceil }}$是大n的唯一可能的极值例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信