Composite Interconnects for High-Performance Computing Beyond the 7nm Node

P. Bhosale, S. Parikh, N. Lanzillo, R. Tao, T. Nogami, M. Gage, R. Shaviv, H. Huang, A. Simon, M. Stolfi, S. Reidy, J. Lee, N. Loubet, B. Haran
{"title":"Composite Interconnects for High-Performance Computing Beyond the 7nm Node","authors":"P. Bhosale, S. Parikh, N. Lanzillo, R. Tao, T. Nogami, M. Gage, R. Shaviv, H. Huang, A. Simon, M. Stolfi, S. Reidy, J. Lee, N. Loubet, B. Haran","doi":"10.1109/VLSITechnology18217.2020.9265021","DOIUrl":null,"url":null,"abstract":"We demonstrate a design-technology co-optimization (DTCO) solution for enabling novel composite interconnects in next-generation high-performance computing (HPC) applications. Minimum-pitch signal line optimization with aggressively shrunk feature size potentially requires a non-Cu conductor while relaxed-pitch signal and power line optimization require traditional Cu metallization, along with properly tuned power tap spacing, activity factor and standard cell size. We discuss significant process innovation required to co-optimize signal and power line resistances. Our composite metallization scheme also reduces via resistance by 50%, which results in a net performance uplift of between 2%-10% depending on via density and power requirements. We believe this is an optimal approach for HPC applications that have implemented alternate, higher-resistivity conductor metals at the 1x levels","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"96 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We demonstrate a design-technology co-optimization (DTCO) solution for enabling novel composite interconnects in next-generation high-performance computing (HPC) applications. Minimum-pitch signal line optimization with aggressively shrunk feature size potentially requires a non-Cu conductor while relaxed-pitch signal and power line optimization require traditional Cu metallization, along with properly tuned power tap spacing, activity factor and standard cell size. We discuss significant process innovation required to co-optimize signal and power line resistances. Our composite metallization scheme also reduces via resistance by 50%, which results in a net performance uplift of between 2%-10% depending on via density and power requirements. We believe this is an optimal approach for HPC applications that have implemented alternate, higher-resistivity conductor metals at the 1x levels
7nm以上节点的高性能计算复合互连
我们展示了一种设计-技术协同优化(DTCO)解决方案,用于在下一代高性能计算(HPC)应用中实现新型复合互连。最小螺距信号线优化与大幅缩小特征尺寸可能需要非铜导体,而松弛螺距信号线和电力线优化需要传统的铜金属化,以及适当调整电源抽头间距、活度因子和标准电池尺寸。我们讨论了共同优化信号和电源线电阻所需的重要工艺创新。我们的复合金属化方案还减少了50%的通孔电阻,根据通孔密度和功率要求,净性能提升2%-10%。我们相信这是高性能计算应用的最佳方法,这些应用已经实现了替代的、更高电阻率的金属导体
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信