Music Note Feature Recognition Method based on Hilbert Space Method Fused with Partial Differential Equations

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS
Liqin Liu
{"title":"Music Note Feature Recognition Method based on Hilbert Space Method Fused with Partial Differential Equations","authors":"Liqin Liu","doi":"10.14569/ijacsa.2023.0140217","DOIUrl":null,"url":null,"abstract":"—Hilbert space method is an old mathematical theoretical model developed based on linear algebra and has a high theoretical value and practical application. The basic idea of the Hilbert space method is to use the existence of some stable relationship between variables and to use the dynamic dependence between variables to construct the solution of differential equations, thus transforming mathematical problems into algebraic problems. This paper firstly studies the denoising model in the process of music note feature recognition based on partial differential equations, then analyzes the denoising method based on partial differential equations and gives an algorithm for fused music note feature recognition in Hilbert space; secondly, this paper studies the commonly used music note feature recognition methods, including linear predictive cepstral coefficients, Mel frequency cepstral coefficients, wavelet transform-based feature extraction methods and Hilbert space-based feature extraction methods. Their corresponding feature extraction processes are given.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"313 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

—Hilbert space method is an old mathematical theoretical model developed based on linear algebra and has a high theoretical value and practical application. The basic idea of the Hilbert space method is to use the existence of some stable relationship between variables and to use the dynamic dependence between variables to construct the solution of differential equations, thus transforming mathematical problems into algebraic problems. This paper firstly studies the denoising model in the process of music note feature recognition based on partial differential equations, then analyzes the denoising method based on partial differential equations and gives an algorithm for fused music note feature recognition in Hilbert space; secondly, this paper studies the commonly used music note feature recognition methods, including linear predictive cepstral coefficients, Mel frequency cepstral coefficients, wavelet transform-based feature extraction methods and Hilbert space-based feature extraction methods. Their corresponding feature extraction processes are given.
基于Hilbert空间法与偏微分方程融合的音符特征识别方法
希尔伯特空间方法是在线性代数基础上发展起来的一种古老的数学理论模型,具有很高的理论价值和实际应用价值。希尔伯特空间方法的基本思想是利用变量之间存在某种稳定的关系,利用变量之间的动态依赖关系来构造微分方程的解,从而将数学问题转化为代数问题。本文首先研究了基于偏微分方程的音符特征识别过程中的去噪模型,然后分析了基于偏微分方程的去噪方法,给出了Hilbert空间中融合音符特征识别的算法;其次,研究了常用的音符特征识别方法,包括线性预测倒谱系数、Mel频率倒谱系数、基于小波变换的特征提取方法和基于Hilbert空间的特征提取方法。给出了相应的特征提取过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信