Seawater Reinforces Synthesis of Mesoporous and Microporous Zeolites from Egyptian Fly Ash for Removal Ions of Cadmium, Iron, Nickel, and Lead from Artificially Contaminated Water

L. Ibrahim, E. ElSayed
{"title":"Seawater Reinforces Synthesis of Mesoporous and Microporous Zeolites from Egyptian Fly Ash for Removal Ions of Cadmium, Iron, Nickel, and Lead from Artificially Contaminated Water","authors":"L. Ibrahim, E. ElSayed","doi":"10.21608/EJCHEM.2021.73834.3661","DOIUrl":null,"url":null,"abstract":"This study focuses on the production of mesoporous and microporous zeolites via fusion pre-treating fly ash with NaOH followed by hydrothermal treatment utilizing seawater. Three pretreatments for fly ash were carried out utilizing 1:1, 1.2:1, and 1.4:1 of NaOH:fly ash ratio to compare the removal efficiency for cadmium Cd(II), iron Fe(II), nickel Ni(II), and lead Pb(II) from artificially contaminated water. The impacts of several variables including concentrations, weights, pH, and contact times were examined to acquire knowledge on the adsorption rate. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Brunaauer-Emmett-Teller (BET) were utilized to investigate zeolite structures. N2 adsorption/desorption isotherms demonstrated that the synthetic zeolites were mesoporous and microporous materials with a higher specific area (347, 240, and 127 m2/g) than the values for raw fly ash (15m2/g). The X-ray diffraction outcome suggested that the synthetic products mainly belonged to phillipsite, carbonate cancrinite, and hydroxysodalite. These outcomes showed that fly ash and seawater from power plants are appropriate for synthesizing high-quality zeolites. For contaminated water treatment, the products are effective for removal Cd(II), Fe(II), Ni(II), and Pb(II) at pH 7, contact time 45 min, and dose 1 g/L. Zeolites recycling outcomes showed that the removal efficiency of investigated metal ions by Z1, Z2, and Z3 was reduced by an average of 7%, 5%, and 3% after regeneration.","PeriodicalId":22429,"journal":{"name":"The Egyptian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Egyptian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/EJCHEM.2021.73834.3661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study focuses on the production of mesoporous and microporous zeolites via fusion pre-treating fly ash with NaOH followed by hydrothermal treatment utilizing seawater. Three pretreatments for fly ash were carried out utilizing 1:1, 1.2:1, and 1.4:1 of NaOH:fly ash ratio to compare the removal efficiency for cadmium Cd(II), iron Fe(II), nickel Ni(II), and lead Pb(II) from artificially contaminated water. The impacts of several variables including concentrations, weights, pH, and contact times were examined to acquire knowledge on the adsorption rate. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Brunaauer-Emmett-Teller (BET) were utilized to investigate zeolite structures. N2 adsorption/desorption isotherms demonstrated that the synthetic zeolites were mesoporous and microporous materials with a higher specific area (347, 240, and 127 m2/g) than the values for raw fly ash (15m2/g). The X-ray diffraction outcome suggested that the synthetic products mainly belonged to phillipsite, carbonate cancrinite, and hydroxysodalite. These outcomes showed that fly ash and seawater from power plants are appropriate for synthesizing high-quality zeolites. For contaminated water treatment, the products are effective for removal Cd(II), Fe(II), Ni(II), and Pb(II) at pH 7, contact time 45 min, and dose 1 g/L. Zeolites recycling outcomes showed that the removal efficiency of investigated metal ions by Z1, Z2, and Z3 was reduced by an average of 7%, 5%, and 3% after regeneration.
海水强化埃及飞灰合成介孔和微孔沸石去除人工污染水中镉、铁、镍和铅离子
本文主要研究了用NaOH对粉煤灰进行熔融预处理,然后利用海水进行水热处理制备介孔和微孔沸石。采用NaOH:粉煤灰比为1:1、1.2:1和1.4:1的粉煤灰预处理方法,比较了粉煤灰对人工污染水中镉Cd(II)、铁Fe(II)、镍Ni(II)和铅Pb(II)的去除率。考察了包括浓度、重量、pH和接触时间在内的几个变量对吸附速率的影响。采用x射线衍射(XRD)、扫描电镜(SEM)和BET (brunaauer - emmet - teller)对沸石结构进行了表征。N2吸附/解吸等温线表明,合成沸石为介孔和微孔材料,比面积(347、240和127 m2/g)高于原粉煤灰(15m2/g)。x射线衍射结果表明,合成产物主要为菲利普石、碳酸盐癌质岩和羟基钠石。结果表明,粉煤灰和电厂海水是制备高质量沸石的合适原料。在pH为7、接触时间为45 min、投加量为1 g/L的条件下,产品对Cd(II)、Fe(II)、Ni(II)、Pb(II)具有较好的去除效果。沸石回收结果表明,再生后Z1、Z2和Z3对所研究金属离子的去除率分别平均降低7%、5%和3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信