Path Smoothing With Support Vector Regression

Pub Date : 2020-07-20 DOI:10.31289/jite.v4i1.3856
Donni Richasdy, Saiful Akbar
{"title":"Path Smoothing With Support Vector Regression","authors":"Donni Richasdy, Saiful Akbar","doi":"10.31289/jite.v4i1.3856","DOIUrl":null,"url":null,"abstract":"One of moving object problems is the incomplete data that acquired by Geo-tracking technology. This phenomenon can be found in aircraft ground-based tracking with data loss come near to 5 minutes. It needs path smoothing process to complete the data. One solution of path smoothing is using physics of motion, while this research performs path smoothing process using machine learning algorithm that is Support Vector Regression (SVR). This study will optimize the SVR configuration parameters such as kernel, common, gamma, epsilon and degree. Support Vector Regression will predict value of the data lost from aircraft tracking data. We use combination of mean absolute error (MAE) and mean absolute percentage error (MAPE) to get more accuracy. MAE will explain the average value of error that occurs, while MAPE will explain the error percentage to the data. In the experiment, the best error value MAE 0.52 and MAPE 2.07, which means error data ± 0.52, this is equal to 2.07% of the overall data value. Keywords: Moving Object, Path Smoothing, Support Vector Regression, MAE","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31289/jite.v4i1.3856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of moving object problems is the incomplete data that acquired by Geo-tracking technology. This phenomenon can be found in aircraft ground-based tracking with data loss come near to 5 minutes. It needs path smoothing process to complete the data. One solution of path smoothing is using physics of motion, while this research performs path smoothing process using machine learning algorithm that is Support Vector Regression (SVR). This study will optimize the SVR configuration parameters such as kernel, common, gamma, epsilon and degree. Support Vector Regression will predict value of the data lost from aircraft tracking data. We use combination of mean absolute error (MAE) and mean absolute percentage error (MAPE) to get more accuracy. MAE will explain the average value of error that occurs, while MAPE will explain the error percentage to the data. In the experiment, the best error value MAE 0.52 and MAPE 2.07, which means error data ± 0.52, this is equal to 2.07% of the overall data value. Keywords: Moving Object, Path Smoothing, Support Vector Regression, MAE
分享
查看原文
路径平滑与支持向量回归
运动目标的一个问题是地理跟踪技术获取的数据不完整。这种现象可以在飞机地面跟踪中发现,数据丢失时间接近5分钟。需要对数据进行路径平滑处理。路径平滑的一种解决方案是使用运动物理,而本研究使用机器学习算法支持向量回归(SVR)进行路径平滑处理。本研究将优化SVR配置参数,如kernel, common, gamma, epsilon和degree。支持向量回归将对飞机跟踪数据的数据丢失值进行预测。我们使用平均绝对误差(MAE)和平均绝对百分比误差(MAPE)的组合来获得更高的精度。MAE将解释发生的误差的平均值,而MAPE将解释数据的误差百分比。在实验中,最佳误差值MAE为0.52,MAPE为2.07,即误差数据±0.52,这相当于整体数据值的2.07%。关键词:运动目标,路径平滑,支持向量回归,MAE
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信