A New Framework for Matching Forensic Composite Sketches With Digital Images

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
T. ChethanaH., Trisiladevi C. Nagavi
{"title":"A New Framework for Matching Forensic Composite Sketches With Digital Images","authors":"T. ChethanaH., Trisiladevi C. Nagavi","doi":"10.4018/IJDCF.20210901.OA1","DOIUrl":null,"url":null,"abstract":"Face sketch recognition is considered as a sub-problem of face recognition. Matching composite sketches with its corresponding digital image is one of the challenging tasks. A new convolution neural network (CNN) framework for matching composite sketches with digital images is proposed in this work. The framework consists of a base CNN model that uses swish activation function in the hidden layers. Both composite sketches and digital images are trained separately in the network by providing matching pairs and mismatching pairs. The final output resulted from the network’s final layer is compared with the threshold value, and then the pair is assigned to the same or different class. The proposed framework is evaluated on two datasets, and it exhibits an accuracy of 78.26% with extended-PRIP (E-PRIP) and 69.57% with composite sketches with age variations (CSA) respectively. Experimental analysis shows the improved results compared to state-of-the-art composite sketch matching systems.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDCF.20210901.OA1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Face sketch recognition is considered as a sub-problem of face recognition. Matching composite sketches with its corresponding digital image is one of the challenging tasks. A new convolution neural network (CNN) framework for matching composite sketches with digital images is proposed in this work. The framework consists of a base CNN model that uses swish activation function in the hidden layers. Both composite sketches and digital images are trained separately in the network by providing matching pairs and mismatching pairs. The final output resulted from the network’s final layer is compared with the threshold value, and then the pair is assigned to the same or different class. The proposed framework is evaluated on two datasets, and it exhibits an accuracy of 78.26% with extended-PRIP (E-PRIP) and 69.57% with composite sketches with age variations (CSA) respectively. Experimental analysis shows the improved results compared to state-of-the-art composite sketch matching systems.
一种新的法医合成草图与数字图像匹配框架
人脸素描识别是人脸识别的一个子问题。将合成草图与其对应的数字图像进行匹配是具有挑战性的任务之一。本文提出了一种新的卷积神经网络框架,用于合成草图与数字图像的匹配。该框架由一个基本的CNN模型组成,该模型在隐藏层中使用swish激活函数。通过提供匹配对和不匹配对,在网络中分别训练合成草图和数字图像。将网络最后一层的最终输出与阈值进行比较,然后将对分配到相同或不同的类中。在两个数据集上对所提出的框架进行了评估,扩展prip (E-PRIP)和年龄变化复合草图(CSA)的准确率分别为78.26%和69.57%。实验分析表明,与目前最先进的复合草图匹配系统相比,改进的结果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信