Responses of nitrogen stable isotopes in fish to phosphorus limitation in freshwater wetlands

IF 1.6 3区 环境科学与生态学 Q3 FISHERIES
Jianming Hong, B. Gu
{"title":"Responses of nitrogen stable isotopes in fish to phosphorus limitation in freshwater wetlands","authors":"Jianming Hong, B. Gu","doi":"10.1051/kmae/2020033","DOIUrl":null,"url":null,"abstract":"Human-induced eutrophication has altered ecological processes in aquatic ecosystems. Detection of ecological changes is a prerequisite for protecting ecosystems from degradation. In this study, nitrogen stable isotopes (δ15N) in fish are evaluated as indicators of environmental changes in south Florida wetlands. Stable nitrogen isotope (δ15N) data of select fish species and water quality collected from the Florida Everglades between the 1990s and 2000s were used to assess the relationship between total phosphorus concentrations and δ15N ratios. The δ15N ratios in nine of ten select fish species increase significantly as total phosphorus concentration in the surface water increases. There were significant relationships between total nitrogen concentration in the surface water and δ15N ratios in several fish species. The pattern of changes in δ15N ratios along nutrient gradients suggests that increased eutrophication is recorded as the δ15N ratios in fish. The lack of human wastewater loading, the dominance in agricultural runoff and the high TN:TP ratio suggest that phosphorus is the limiting factor driving ecosystem productivity and the changes of δ15N ratios in fish. Results from this analysis demonstrate that δ15N ratios in fish integrate biotic responses to eutrophic process over time and could be a robust indicator for early ecological changes.","PeriodicalId":54748,"journal":{"name":"Knowledge and Management of Aquatic Ecosystems","volume":"45 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Management of Aquatic Ecosystems","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1051/kmae/2020033","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Human-induced eutrophication has altered ecological processes in aquatic ecosystems. Detection of ecological changes is a prerequisite for protecting ecosystems from degradation. In this study, nitrogen stable isotopes (δ15N) in fish are evaluated as indicators of environmental changes in south Florida wetlands. Stable nitrogen isotope (δ15N) data of select fish species and water quality collected from the Florida Everglades between the 1990s and 2000s were used to assess the relationship between total phosphorus concentrations and δ15N ratios. The δ15N ratios in nine of ten select fish species increase significantly as total phosphorus concentration in the surface water increases. There were significant relationships between total nitrogen concentration in the surface water and δ15N ratios in several fish species. The pattern of changes in δ15N ratios along nutrient gradients suggests that increased eutrophication is recorded as the δ15N ratios in fish. The lack of human wastewater loading, the dominance in agricultural runoff and the high TN:TP ratio suggest that phosphorus is the limiting factor driving ecosystem productivity and the changes of δ15N ratios in fish. Results from this analysis demonstrate that δ15N ratios in fish integrate biotic responses to eutrophic process over time and could be a robust indicator for early ecological changes.
淡水湿地鱼类氮稳定同位素对磷限制的响应
人为引起的富营养化改变了水生生态系统的生态过程。监测生态变化是保护生态系统免遭退化的先决条件。本研究对南佛罗里达湿地鱼类的氮稳定同位素(δ15N)作为环境变化的指标进行了评价。利用20世纪90年代至21世纪初采集的佛罗里达大沼泽地选定鱼类和水质的稳定氮同位素(δ15N)数据,评估了总磷浓度与δ15N比值的关系。10种鱼类中有9种的δ15N值随地表水总磷浓度的增加而显著增加。几种鱼类表层水体总氮浓度与δ15N比值之间存在显著的相关关系。δ15N比值沿营养梯度的变化规律表明,富营养化程度的增加反映在鱼类的δ15N比值上。人类污水负荷不足,农业径流占主导地位,TN:TP比值高,表明磷是驱动生态系统生产力和鱼类δ15N比值变化的限制因子。该分析结果表明,随着时间的推移,鱼类的δ15N比率整合了生物对富营养化过程的响应,可能是早期生态变化的有力指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Knowledge and Management of Aquatic Ecosystems
Knowledge and Management of Aquatic Ecosystems 环境科学-海洋与淡水生物学
CiteScore
3.70
自引率
5.60%
发文量
22
审稿时长
>12 weeks
期刊介绍: Knowledge and Management of Aquatic Ecosystems (KMAE-Bulletin Français de la Pêche et de la Pisciculture since 1928) serves as a foundation for scientific advice across the broad spectrum of management and conservation issues related to freshwater ecosystems. The journal publishes articles, short communications, reviews, comments and replies that contribute to a scientific understanding of freshwater ecosystems and the impact of human activities upon these systems. Its scope includes economic, social, and public administration studies, in so far as they are directly concerned with the management of freshwater ecosystems (e.g. European Water Framework Directive, USA Clean Water Act, Canadian Water Quality Guidelines, …) and prove of general interest to freshwater specialists. Papers on insular freshwater ecosystems and on transitional waters are welcome. KMAE is not a preferred journal for taxonomical, physiological, biological, toxicological studies, unless a clear link to ecological aspects can be established. Articles with a very descriptive content can be accepted if they are part of a broader ecological context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信