Gesture Interpretation Control System Using Convolutional Neural Networks

Benedikt Baldursson, Behnood Rasti, Karl S. Gudmundsson, D. Cojocaru, Kristinn Andersen, Saemundur E. Thorsteinsson
{"title":"Gesture Interpretation Control System Using Convolutional Neural Networks","authors":"Benedikt Baldursson, Behnood Rasti, Karl S. Gudmundsson, D. Cojocaru, Kristinn Andersen, Saemundur E. Thorsteinsson","doi":"10.1109/BIA48344.2019.8967476","DOIUrl":null,"url":null,"abstract":"This paper proposes a non-invasive control system for electrical wheelchairs utilizing facial gestures of individuals captured by real-time monocular camera. The images are interpreted with a convolutional neural network that achieves up to ~99.5% overall accuracy. The control system uses an embedded system with a graphics processing unit for predicting real-time throughput with fast inference time. This solution offers great versatility, where the user can make a gesture to depict a command of his choice.","PeriodicalId":6688,"journal":{"name":"2019 International Conference on Biomedical Innovations and Applications (BIA)","volume":"43 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biomedical Innovations and Applications (BIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIA48344.2019.8967476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a non-invasive control system for electrical wheelchairs utilizing facial gestures of individuals captured by real-time monocular camera. The images are interpreted with a convolutional neural network that achieves up to ~99.5% overall accuracy. The control system uses an embedded system with a graphics processing unit for predicting real-time throughput with fast inference time. This solution offers great versatility, where the user can make a gesture to depict a command of his choice.
基于卷积神经网络的手势解释控制系统
本文提出了一种利用实时单目摄像机捕捉到的个体面部动作的电动轮椅非侵入式控制系统。这些图像是用卷积神经网络解释的,总体准确率高达99.5%。控制系统采用带有图形处理单元的嵌入式系统,预测实时吞吐量,推理时间短。这个解决方案提供了很大的通用性,用户可以通过手势来描述他选择的命令。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信