Concircular helices and concircular surfaces in Euclidean 3-space R^3

IF 0.7 4区 数学 Q2 MATHEMATICS
P. Lucas, José Antonio ORTEGA YAGÜES
{"title":"Concircular helices and concircular surfaces in Euclidean 3-space R^3","authors":"P. Lucas, José Antonio ORTEGA YAGÜES","doi":"10.15672/hujms.1187220","DOIUrl":null,"url":null,"abstract":"Given a submanifold $M\\subset R^{n}$ and a concircular vector field $Y\\in Con(R^{n})$, $M$ is said to be a concircular submanifold (with axis $Y$) if $\\langle N,Y\\rangle$ is a constant function along $M$, $N$ being any unit vector field in the first normal space. In this paper we characterize concircular helices in $R^3$ by means of a differential equation involving their curvature and torsion. We find a full description of concircular surfaces in $R^3$ as a special family of ruled surfaces, and we show that $M\\subset R^{3}$ is a proper concircular surface if and only if either $M$ is parallel to a conical surface or $M$ is the normal surface to a spherical curve. Finally, we characterize the concircular helices as geodesics of concircular surfaces.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"19 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1187220","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Given a submanifold $M\subset R^{n}$ and a concircular vector field $Y\in Con(R^{n})$, $M$ is said to be a concircular submanifold (with axis $Y$) if $\langle N,Y\rangle$ is a constant function along $M$, $N$ being any unit vector field in the first normal space. In this paper we characterize concircular helices in $R^3$ by means of a differential equation involving their curvature and torsion. We find a full description of concircular surfaces in $R^3$ as a special family of ruled surfaces, and we show that $M\subset R^{3}$ is a proper concircular surface if and only if either $M$ is parallel to a conical surface or $M$ is the normal surface to a spherical curve. Finally, we characterize the concircular helices as geodesics of concircular surfaces.
欧几里得三维空间R^3中的圆锥螺旋和圆锥曲面
给定子流形$M\子集R^{n}$和Con(R^{n})$中的共圆向量场$Y\,如果$\ rangle n,Y\rangle$是沿$M$的常数函数,$ n $是第一正规空间中的任意单位向量场,则$M$是一个共圆子流形(轴为$Y$)。本文用包含曲率和扭转的微分方程刻画了R^3$中的共圆螺旋。我们找到了R^3$中的共圆面作为一类特殊直纹曲面的完整描述,并且证明了R^{3}$是一个固有的共圆面,当且仅当$M$平行于一个圆锥曲面或$M$是一个球面曲线的法线曲面。最后,我们将共圆螺旋表征为共圆表面的测地线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics. We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信