{"title":"Research on seismic performance of slotted RC walls with replaceable damper","authors":"Jian Wang, J. Ou, Lianfeng Huo","doi":"10.1117/12.2085595","DOIUrl":null,"url":null,"abstract":"Structural walls are important components of resisting the lateral loads for high-rise structures. However, the traditional walls are difficult to repair or replace in post-earthquake events. Hence, over the past few years, a research was made of several kinds of replaceable structures such as replaceable coupling beam and replaceable wall toe. In this paper, a new seismic energy dissipation wall structure is proposed. The new wall is one with purposely build-in vertical slits within the wall panel, and metallic dampers are installed on the vertical slits so that the seismic performance of the structure can be controlled. Moreover, the metallic damper is easy to be replaced in post-earthquake events. The proposed metallic damper is with a serial of diamond-shaped holes and designed based on the lateral deformation of the wall. The yielding scheme of the metallic damper is proposed in order to achieve the ductility and energy dissipation demand of the walls. The mechanical model of the metallic damper is established. Finally, the numerical simulations of the metallic damper based on the finite element software ABAQUS are presented to validate the effectiveness of the proposed mathematic model.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/12.2085595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
Structural walls are important components of resisting the lateral loads for high-rise structures. However, the traditional walls are difficult to repair or replace in post-earthquake events. Hence, over the past few years, a research was made of several kinds of replaceable structures such as replaceable coupling beam and replaceable wall toe. In this paper, a new seismic energy dissipation wall structure is proposed. The new wall is one with purposely build-in vertical slits within the wall panel, and metallic dampers are installed on the vertical slits so that the seismic performance of the structure can be controlled. Moreover, the metallic damper is easy to be replaced in post-earthquake events. The proposed metallic damper is with a serial of diamond-shaped holes and designed based on the lateral deformation of the wall. The yielding scheme of the metallic damper is proposed in order to achieve the ductility and energy dissipation demand of the walls. The mechanical model of the metallic damper is established. Finally, the numerical simulations of the metallic damper based on the finite element software ABAQUS are presented to validate the effectiveness of the proposed mathematic model.