{"title":"Diagnostic Model of In-Hospital Mortality in Patients with Acute ST-Segment Elevation Myocardial Infarction Used Artificial Intelligence Methods","authors":"Yong Li","doi":"10.1155/2022/8758617","DOIUrl":null,"url":null,"abstract":"Background Preventing in-hospital mortality in patients with ST-segment elevation myocardial infarction (STEMI) is a crucial step. Objectives The objective of our research was to develop and externally validate the diagnostic model of in-hospital mortality in acute STEMI patients used artificial intelligence methods. Methods We divided nonrandomly the American population with acute STEMI into a training set, a test set, and a validation set. We converted the unbalanced data into balanced data. We used artificial intelligence methods to develop and externally validate several diagnostic models. We used confusion matrix combined with the area under the receiver operating characteristic curve (AUC) to evaluate the pros and cons of the above models. Results The strongest predictors of in-hospital mortality were age, gender, cardiogenic shock, atrial fibrillation (AF), ventricular fibrillation (VF), third degree atrioventricular block, in-hospital bleeding, underwent percutaneous coronary intervention (PCI) during hospitalization, underwent coronary artery bypass grafting (CABG) during hospitalization, hypertension history, diabetes history, and myocardial infarction history. The F2 score of logistic regression in the training set, the test set, and the validation dataset was 0.81, 0.6, and 0.59, respectively. The AUC of logistic regression in the training set, the test set, and the validation data set was 0.77, 0.78, and 0.8, respectively. The diagnostic model built by logistic regression was the best. Conclusion The strongest predictors of in-hospital mortality were age, gender, cardiogenic shock, AF, VF, third degree atrioventricular block, in-hospital bleeding, underwent PCI during hospitalization, underwent CABG during hospitalization, hypertension history, diabetes history, and myocardial infarction history. We had used artificial intelligence methods developed and externally validated several diagnostic models of in-hospital mortality in acute STEMI patients. The diagnostic model built by logistic regression was the best. We registered this study with the registration number ChiCTR1900027129 (the WHO International Clinical Trials Registry Platform (ICTRP) on 1 November 2019).","PeriodicalId":9494,"journal":{"name":"Cardiology Research and Practice","volume":"27 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiology Research and Practice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/8758617","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background Preventing in-hospital mortality in patients with ST-segment elevation myocardial infarction (STEMI) is a crucial step. Objectives The objective of our research was to develop and externally validate the diagnostic model of in-hospital mortality in acute STEMI patients used artificial intelligence methods. Methods We divided nonrandomly the American population with acute STEMI into a training set, a test set, and a validation set. We converted the unbalanced data into balanced data. We used artificial intelligence methods to develop and externally validate several diagnostic models. We used confusion matrix combined with the area under the receiver operating characteristic curve (AUC) to evaluate the pros and cons of the above models. Results The strongest predictors of in-hospital mortality were age, gender, cardiogenic shock, atrial fibrillation (AF), ventricular fibrillation (VF), third degree atrioventricular block, in-hospital bleeding, underwent percutaneous coronary intervention (PCI) during hospitalization, underwent coronary artery bypass grafting (CABG) during hospitalization, hypertension history, diabetes history, and myocardial infarction history. The F2 score of logistic regression in the training set, the test set, and the validation dataset was 0.81, 0.6, and 0.59, respectively. The AUC of logistic regression in the training set, the test set, and the validation data set was 0.77, 0.78, and 0.8, respectively. The diagnostic model built by logistic regression was the best. Conclusion The strongest predictors of in-hospital mortality were age, gender, cardiogenic shock, AF, VF, third degree atrioventricular block, in-hospital bleeding, underwent PCI during hospitalization, underwent CABG during hospitalization, hypertension history, diabetes history, and myocardial infarction history. We had used artificial intelligence methods developed and externally validated several diagnostic models of in-hospital mortality in acute STEMI patients. The diagnostic model built by logistic regression was the best. We registered this study with the registration number ChiCTR1900027129 (the WHO International Clinical Trials Registry Platform (ICTRP) on 1 November 2019).
期刊介绍:
Cardiology Research and Practice is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies that focus on the diagnosis and treatment of cardiovascular disease. The journal welcomes submissions related to systemic hypertension, arrhythmia, congestive heart failure, valvular heart disease, vascular disease, congenital heart disease, and cardiomyopathy.