FKN theorem for the multislice, with applications

Yuval Filmus
{"title":"FKN theorem for the multislice, with applications","authors":"Yuval Filmus","doi":"10.1017/S0963548319000361","DOIUrl":null,"url":null,"abstract":"Abstract The Friedgut–Kalai–Naor (FKN) theorem states that if ƒ is a Boolean function on the Boolean cube which is close to degree one, then ƒ is close to a dictator, a function depending on a single coordinate. The author has extended the theorem to the slice, the subset of the Boolean cube consisting of all vectors with fixed Hamming weight. We extend the theorem further, to the multislice, a multicoloured version of the slice. As an application, we prove a stability version of the edge-isoperimetric inequality for settings of parameters in which the optimal set is a dictator.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548319000361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract The Friedgut–Kalai–Naor (FKN) theorem states that if ƒ is a Boolean function on the Boolean cube which is close to degree one, then ƒ is close to a dictator, a function depending on a single coordinate. The author has extended the theorem to the slice, the subset of the Boolean cube consisting of all vectors with fixed Hamming weight. We extend the theorem further, to the multislice, a multicoloured version of the slice. As an application, we prove a stability version of the edge-isoperimetric inequality for settings of parameters in which the optimal set is a dictator.
多片的FKN定理,及其应用
Friedgut-Kalai-Naor (FKN)定理表明,如果f是布尔立方体上接近于1阶的布尔函数,则f接近于一个依赖于单一坐标的函数。作者将该定理推广到切片,切片是布尔立方体的子集,由所有具有固定汉明权值的向量组成。我们将定理进一步推广到多片,即片的多色版本。作为一个应用,我们证明了最优集为独裁者的参数集的边-等周不等式的稳定性版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信