Pruning by leveraging training dynamics

IF 1.4 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Andrei C. Apostol, M. Stol, P. Forré
{"title":"Pruning by leveraging training dynamics","authors":"Andrei C. Apostol, M. Stol, P. Forré","doi":"10.3233/aic-210127","DOIUrl":null,"url":null,"abstract":"We propose a novel pruning method which uses the oscillations around 0, i.e. sign flips, that a weight has undergone during training in order to determine its saliency. Our method can perform pruning before the network has converged, requires little tuning effort due to having good default values for its hyperparameters, and can directly target the level of sparsity desired by the user. Our experiments, performed on a variety of object classification architectures, show that it is competitive with existing methods and achieves state-of-the-art performance for levels of sparsity of 99.6 % and above for 2 out of 3 of the architectures tested. Moreover, we demonstrate that our method is compatible with quantization, another model compression technique. For reproducibility, we release our code at https://github.com/AndreiXYZ/flipout.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"24 1","pages":"65-85"},"PeriodicalIF":1.4000,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/aic-210127","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel pruning method which uses the oscillations around 0, i.e. sign flips, that a weight has undergone during training in order to determine its saliency. Our method can perform pruning before the network has converged, requires little tuning effort due to having good default values for its hyperparameters, and can directly target the level of sparsity desired by the user. Our experiments, performed on a variety of object classification architectures, show that it is competitive with existing methods and achieves state-of-the-art performance for levels of sparsity of 99.6 % and above for 2 out of 3 of the architectures tested. Moreover, we demonstrate that our method is compatible with quantization, another model compression technique. For reproducibility, we release our code at https://github.com/AndreiXYZ/flipout.
通过利用训练动态来修剪
我们提出了一种新的修剪方法,它使用在0附近的振荡,即符号翻转,权值在训练期间经历了以确定其显著性。我们的方法可以在网络收敛之前执行剪枝,由于其超参数具有良好的默认值,因此需要很少的调优工作,并且可以直接针对用户所需的稀疏度级别。我们在各种对象分类架构上进行的实验表明,它与现有方法具有竞争力,并且在测试的3个架构中有2个的稀疏度达到99.6%以上,达到了最先进的性能。此外,我们证明了我们的方法是兼容的量化,另一种模型压缩技术。为了再现性,我们在https://github.com/AndreiXYZ/flipout上发布了我们的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AI Communications
AI Communications 工程技术-计算机:人工智能
CiteScore
2.30
自引率
12.50%
发文量
34
审稿时长
4.5 months
期刊介绍: AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies. AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信