{"title":"Accurate and Efficient Dynamic Simulations of Ferroelectric Based Electron Devices","authors":"T. Rollo, L. Daniel, D. Esseni","doi":"10.1109/SISPAD.2019.8870373","DOIUrl":null,"url":null,"abstract":"In recent years electron devices based on ferroelectric materials have attracted a lot of interest well beyond FeRAM memories. Negative capacitance transistors (NC-FETs) have been investigated as steep slope transistors [1], [2], and Ferroelectric FETs (Fe-FETs) are under intense scrutiny also as synaptic devices for neuromorphc computing, where the minor loops in ferroelectrics can allow to achieve multiple values of conductance in read mode [3], [4], [5]. Furthermore, the persistence of ferroelectricity in ultra-thin ferroelectric layers paved the way to ferroelectric tunnelling junctions [6], where a polarization dependent tunneling current can be exploited to realize high impedance memristors, amenable for ultra power-efficient and thus massive parallel computation.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"12 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2019.8870373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years electron devices based on ferroelectric materials have attracted a lot of interest well beyond FeRAM memories. Negative capacitance transistors (NC-FETs) have been investigated as steep slope transistors [1], [2], and Ferroelectric FETs (Fe-FETs) are under intense scrutiny also as synaptic devices for neuromorphc computing, where the minor loops in ferroelectrics can allow to achieve multiple values of conductance in read mode [3], [4], [5]. Furthermore, the persistence of ferroelectricity in ultra-thin ferroelectric layers paved the way to ferroelectric tunnelling junctions [6], where a polarization dependent tunneling current can be exploited to realize high impedance memristors, amenable for ultra power-efficient and thus massive parallel computation.