{"title":"Heart Disease Classification and Recommendation by Optimized Features and Adaptive Boost Learning","authors":"Pardeep Kumar, Ankit Kumar","doi":"10.14569/ijacsa.2023.01403103","DOIUrl":null,"url":null,"abstract":"—In recent decades, cardiovascular diseases have eclipsed all others as the main reason for death in both low and middle income countries. Early identification and continuous clinical monitoring can reduce the death rate associated with heart disorders. Neither service is yet accessible, as it requires more intellect, time, and skill to effectively detect cardiac disorders in all circumstances and to advise a patient for 24 hours. In this study, researchers suggested a Machine Learning-based approach to forecast the development of cardiac disease. For precise identification of cardiac disease, an efficient ML technique is required. The proposed method works on five classes, one normal and four diseases. In the research, all classes were assigned a primary task, and recommendations were made based on that. The proposed method optimises feature weighting and selects efficient features. Following feature optimization, adaptive boost learning using tree and KNN bases is used. In the trial, sensitivity improved by 3-4%, specificity by 4-5%, and accuracy by 3-4% compared to the previous approach.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.01403103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
—In recent decades, cardiovascular diseases have eclipsed all others as the main reason for death in both low and middle income countries. Early identification and continuous clinical monitoring can reduce the death rate associated with heart disorders. Neither service is yet accessible, as it requires more intellect, time, and skill to effectively detect cardiac disorders in all circumstances and to advise a patient for 24 hours. In this study, researchers suggested a Machine Learning-based approach to forecast the development of cardiac disease. For precise identification of cardiac disease, an efficient ML technique is required. The proposed method works on five classes, one normal and four diseases. In the research, all classes were assigned a primary task, and recommendations were made based on that. The proposed method optimises feature weighting and selects efficient features. Following feature optimization, adaptive boost learning using tree and KNN bases is used. In the trial, sensitivity improved by 3-4%, specificity by 4-5%, and accuracy by 3-4% compared to the previous approach.
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications