Towards Better Evidence Extraction Methods for Fact-Checking Systems

Pedro Azevedo, Gil Rocha, Diego Esteves, Henrique Lopes Cardoso
{"title":"Towards Better Evidence Extraction Methods for Fact-Checking Systems","authors":"Pedro Azevedo, Gil Rocha, Diego Esteves, Henrique Lopes Cardoso","doi":"10.1145/3486622.3493930","DOIUrl":null,"url":null,"abstract":"Given current levels of misinformation spread, never before have fact-checking frameworks been so critical. Unfortunately, the performance of Automated Fact-checking systems is still poor due to the complexity of the task. In this paper, we present an ablation study of a framework submitted to the FEVER 1.0 challenge. Based on our findings, we explore how triple-based information retrieval, coreference resolution, and recent language model representations can impact the performance of each subtask. We show the importance of recall and precision in the retrieval of documents and sentences that can be provided to justify the veracity of a given claim. We reach state-of-the-art results in the Document Retrieval task and we show promising results when using coreference resolution to improve the Sentence Retrieval task.","PeriodicalId":89230,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486622.3493930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given current levels of misinformation spread, never before have fact-checking frameworks been so critical. Unfortunately, the performance of Automated Fact-checking systems is still poor due to the complexity of the task. In this paper, we present an ablation study of a framework submitted to the FEVER 1.0 challenge. Based on our findings, we explore how triple-based information retrieval, coreference resolution, and recent language model representations can impact the performance of each subtask. We show the importance of recall and precision in the retrieval of documents and sentences that can be provided to justify the veracity of a given claim. We reach state-of-the-art results in the Document Retrieval task and we show promising results when using coreference resolution to improve the Sentence Retrieval task.
为事实核查系统提供更好的证据提取方法
鉴于目前错误信息传播的程度,事实核查框架从未如此重要。不幸的是,由于任务的复杂性,自动事实检查系统的性能仍然很差。在本文中,我们提出了一个框架的消融研究,以应对FEVER 1.0的挑战。基于我们的发现,我们探讨了基于三重的信息检索、共同参考解析和最新语言模型表示如何影响每个子任务的性能。我们展示了在文件和句子的检索中召回和精确的重要性,这些文件和句子可以用来证明给定主张的真实性。我们在文档检索任务中获得了最先进的结果,并且在使用共同参考分辨率来改进句子检索任务时显示出令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信