{"title":"Structural and optical characterization of SILAR deposited CTS thin films for optoelectronic applications","authors":"P. Sapna, K. Preetha","doi":"10.1063/1.5130378","DOIUrl":null,"url":null,"abstract":"Copper tin sulphide (CTS) thin films have been prepared at room temperature on soda lime glass substrate by successive ionic layer adsorption and reaction (SILAR) method. In this work, cationic solution bath contains copper chloride, tin chloride, triethanolamine and anionic bath contains thioacetamide as precursors. Two sets of samples were prepared with 40 and 60 deposition cycles, keeping dipping and rinsing time constant at 10 and 2 seconds respectively. The as- prepared films were characterized by X-ray diffraction (XRD), UV-Vis-NIR spectroscopy, Scanning Electron Microscopy(SEM), Energy Dispersive analysis (EDS) and atomic force microscopy(AFM) analysis. The XRD showed that the film has a triclinic structure. The average crystallite size slightly increases from 21nm to 22.6 nm with increase in deposition cycles. The EDS analysis confirms the presence of Cu, Sn and S.AFM and SEM analysis reveals that the film has a compact structure without any visible cracks or pores. Both the samples have high absorbance in the visible region. The as-deposited CTS samples can be used as absorber layer for solar cell.Copper tin sulphide (CTS) thin films have been prepared at room temperature on soda lime glass substrate by successive ionic layer adsorption and reaction (SILAR) method. In this work, cationic solution bath contains copper chloride, tin chloride, triethanolamine and anionic bath contains thioacetamide as precursors. Two sets of samples were prepared with 40 and 60 deposition cycles, keeping dipping and rinsing time constant at 10 and 2 seconds respectively. The as- prepared films were characterized by X-ray diffraction (XRD), UV-Vis-NIR spectroscopy, Scanning Electron Microscopy(SEM), Energy Dispersive analysis (EDS) and atomic force microscopy(AFM) analysis. The XRD showed that the film has a triclinic structure. The average crystallite size slightly increases from 21nm to 22.6 nm with increase in deposition cycles. The EDS analysis confirms the presence of Cu, Sn and S.AFM and SEM analysis reveals that the film has a compact structure without any visible cracks or pores. Both the samples have high abso...","PeriodicalId":20725,"journal":{"name":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS: ICAM 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS: ICAM 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5130378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Copper tin sulphide (CTS) thin films have been prepared at room temperature on soda lime glass substrate by successive ionic layer adsorption and reaction (SILAR) method. In this work, cationic solution bath contains copper chloride, tin chloride, triethanolamine and anionic bath contains thioacetamide as precursors. Two sets of samples were prepared with 40 and 60 deposition cycles, keeping dipping and rinsing time constant at 10 and 2 seconds respectively. The as- prepared films were characterized by X-ray diffraction (XRD), UV-Vis-NIR spectroscopy, Scanning Electron Microscopy(SEM), Energy Dispersive analysis (EDS) and atomic force microscopy(AFM) analysis. The XRD showed that the film has a triclinic structure. The average crystallite size slightly increases from 21nm to 22.6 nm with increase in deposition cycles. The EDS analysis confirms the presence of Cu, Sn and S.AFM and SEM analysis reveals that the film has a compact structure without any visible cracks or pores. Both the samples have high absorbance in the visible region. The as-deposited CTS samples can be used as absorber layer for solar cell.Copper tin sulphide (CTS) thin films have been prepared at room temperature on soda lime glass substrate by successive ionic layer adsorption and reaction (SILAR) method. In this work, cationic solution bath contains copper chloride, tin chloride, triethanolamine and anionic bath contains thioacetamide as precursors. Two sets of samples were prepared with 40 and 60 deposition cycles, keeping dipping and rinsing time constant at 10 and 2 seconds respectively. The as- prepared films were characterized by X-ray diffraction (XRD), UV-Vis-NIR spectroscopy, Scanning Electron Microscopy(SEM), Energy Dispersive analysis (EDS) and atomic force microscopy(AFM) analysis. The XRD showed that the film has a triclinic structure. The average crystallite size slightly increases from 21nm to 22.6 nm with increase in deposition cycles. The EDS analysis confirms the presence of Cu, Sn and S.AFM and SEM analysis reveals that the film has a compact structure without any visible cracks or pores. Both the samples have high abso...