{"title":"Development of a procedure and tool for retrofit hydropower evaluation at South African dams","authors":"R. Schroeder, I. Loots, M. Dijk, GL Coetzee","doi":"10.17159/wsa/2023.v49.i3.3980","DOIUrl":null,"url":null,"abstract":"South Africa is in a critical power situation and is in dire need of additional generation capacity. Thus, renewable energy sources such as wind, solar and hydropower should be evaluated to identify high-potential and cost-effective sites. Rivers in South Africa, as a water-scarce country, are already heavily impounded, meaning that there are limited sites available for conventional hydropower generation. Instead, novel solutions such as retrofitting hydropower installations to existing infrastructure, like existing dams, are required. To estimate the retrofit hydropower potential at dams, a set of five tools was developed using Python 3, known as the University of Pretoria Retrofit Hydropower Evaluation Software (UP-RHES). The UP-RHES screens potential sites where historic flow records are available, then downloads the required flow records from the national database and performs a first-order hydraulic assessment of the site, as well as a first-order life cycle cost analysis. By applying the UP-RHES to 118 dams operated by the Department of Water and Sanitation (DWS), it was found that a total estimated hydropower potential of 128 MW with an annual energy output of between 385 and 469 GWh exists at South African dams. The Vaal, Pongolapoort, Goedertrouw and Blyderivierpoort Dams were found to be feasible sites with a combined capacity of 77 GWh/annum.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2023.v49.i3.3980","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
South Africa is in a critical power situation and is in dire need of additional generation capacity. Thus, renewable energy sources such as wind, solar and hydropower should be evaluated to identify high-potential and cost-effective sites. Rivers in South Africa, as a water-scarce country, are already heavily impounded, meaning that there are limited sites available for conventional hydropower generation. Instead, novel solutions such as retrofitting hydropower installations to existing infrastructure, like existing dams, are required. To estimate the retrofit hydropower potential at dams, a set of five tools was developed using Python 3, known as the University of Pretoria Retrofit Hydropower Evaluation Software (UP-RHES). The UP-RHES screens potential sites where historic flow records are available, then downloads the required flow records from the national database and performs a first-order hydraulic assessment of the site, as well as a first-order life cycle cost analysis. By applying the UP-RHES to 118 dams operated by the Department of Water and Sanitation (DWS), it was found that a total estimated hydropower potential of 128 MW with an annual energy output of between 385 and 469 GWh exists at South African dams. The Vaal, Pongolapoort, Goedertrouw and Blyderivierpoort Dams were found to be feasible sites with a combined capacity of 77 GWh/annum.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.