On Enumeration and Entropy of Ribbon Tilings

IF 0.7 4区 数学 Q2 MATHEMATICS
Yinsong Chen, V. Kargin
{"title":"On Enumeration and Entropy of Ribbon Tilings","authors":"Yinsong Chen, V. Kargin","doi":"10.37236/10991","DOIUrl":null,"url":null,"abstract":"The paper considers ribbon tilings of large regions and their per-tile entropy (the logarithm of the number of tilings divided by the number of tiles). For tilings of general regions by tiles of length $n$, we give an upper bound on the per-tile entropy as $n - 1$. For growing rectangular regions,  we prove the existence of the asymptotic per tile entropy and show that it is bounded from below by $\\log_2 (n/e)$ and from above by $\\log_2(en)$. For growing generalized \"Aztec Diamond\" regions and for growing \"stair\" regions, the asymptotic per-tile entropy is calculated exactly as $1/2$ and $\\log_2(n + 1) - 1$, respectively.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"59 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/10991","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper considers ribbon tilings of large regions and their per-tile entropy (the logarithm of the number of tilings divided by the number of tiles). For tilings of general regions by tiles of length $n$, we give an upper bound on the per-tile entropy as $n - 1$. For growing rectangular regions,  we prove the existence of the asymptotic per tile entropy and show that it is bounded from below by $\log_2 (n/e)$ and from above by $\log_2(en)$. For growing generalized "Aztec Diamond" regions and for growing "stair" regions, the asymptotic per-tile entropy is calculated exactly as $1/2$ and $\log_2(n + 1) - 1$, respectively.
关于带状切片的枚举和熵
本文考虑了大区域的带状切片及其每切片熵(切片数除以切片数的对数)。对于用长度为$n$的块对一般区域进行平铺,我们给出每块熵的上界为$n - 1$。对于增长的矩形区域,我们证明了逐块渐近熵的存在性,并证明了它从下到上以$\log_2(n/e)$为界,从上到下以$\log_2(en)$为界。对于不断增长的广义“Aztec Diamond”区域和不断增长的“stair”区域,每层的渐近熵分别精确计算为$1/2$和$\log_2(n + 1) - 1$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信