{"title":"On Enumeration and Entropy of Ribbon Tilings","authors":"Yinsong Chen, V. Kargin","doi":"10.37236/10991","DOIUrl":null,"url":null,"abstract":"The paper considers ribbon tilings of large regions and their per-tile entropy (the logarithm of the number of tilings divided by the number of tiles). For tilings of general regions by tiles of length $n$, we give an upper bound on the per-tile entropy as $n - 1$. For growing rectangular regions, we prove the existence of the asymptotic per tile entropy and show that it is bounded from below by $\\log_2 (n/e)$ and from above by $\\log_2(en)$. For growing generalized \"Aztec Diamond\" regions and for growing \"stair\" regions, the asymptotic per-tile entropy is calculated exactly as $1/2$ and $\\log_2(n + 1) - 1$, respectively.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"59 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/10991","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper considers ribbon tilings of large regions and their per-tile entropy (the logarithm of the number of tilings divided by the number of tiles). For tilings of general regions by tiles of length $n$, we give an upper bound on the per-tile entropy as $n - 1$. For growing rectangular regions, we prove the existence of the asymptotic per tile entropy and show that it is bounded from below by $\log_2 (n/e)$ and from above by $\log_2(en)$. For growing generalized "Aztec Diamond" regions and for growing "stair" regions, the asymptotic per-tile entropy is calculated exactly as $1/2$ and $\log_2(n + 1) - 1$, respectively.
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.