A pair degree condition for Hamiltonian cycles in 3-uniform hypergraphs

B. Schülke
{"title":"A pair degree condition for Hamiltonian cycles in 3-uniform hypergraphs","authors":"B. Schülke","doi":"10.1017/s096354832300007x","DOIUrl":null,"url":null,"abstract":"\n We prove a new sufficient pair degree condition for tight Hamiltonian cycles in \n \n \n \n$3$\n\n \n -uniform hypergraphs that (asymptotically) improves the best known pair degree condition due to Rödl, Ruciński, and Szemerédi. For graphs, Chvátal characterised all those sequences of integers for which every pointwise larger (or equal) degree sequence guarantees the existence of a Hamiltonian cycle. A step towards Chvátal’s theorem was taken by Pósa, who improved on Dirac’s tight minimum degree condition for Hamiltonian cycles by showing that a certain weaker condition on the degree sequence of a graph already yields a Hamiltonian cycle.\n In this work, we take a similar step towards a full characterisation of all pair degree matrices that ensure the existence of tight Hamiltonian cycles in \n \n \n \n$3$\n\n \n -uniform hypergraphs by proving a \n \n \n \n$3$\n\n \n -uniform analogue of Pósa’s result. In particular, our result strengthens the asymptotic version of the result by Rödl, Ruciński, and Szemerédi.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s096354832300007x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We prove a new sufficient pair degree condition for tight Hamiltonian cycles in $3$ -uniform hypergraphs that (asymptotically) improves the best known pair degree condition due to Rödl, Ruciński, and Szemerédi. For graphs, Chvátal characterised all those sequences of integers for which every pointwise larger (or equal) degree sequence guarantees the existence of a Hamiltonian cycle. A step towards Chvátal’s theorem was taken by Pósa, who improved on Dirac’s tight minimum degree condition for Hamiltonian cycles by showing that a certain weaker condition on the degree sequence of a graph already yields a Hamiltonian cycle. In this work, we take a similar step towards a full characterisation of all pair degree matrices that ensure the existence of tight Hamiltonian cycles in $3$ -uniform hypergraphs by proving a $3$ -uniform analogue of Pósa’s result. In particular, our result strengthens the asymptotic version of the result by Rödl, Ruciński, and Szemerédi.
3-一致超图中哈密顿环的一对度条件
我们证明了$3$ -一致超图中紧哈密顿环的一个新的充分对度条件,它(渐近地)改进了由Rödl, Ruciński和szemer所引起的最著名的对度条件。对于图,Chvátal描述了所有那些整数序列,其中每个点向较大(或相等)度序列保证哈密顿循环的存在。向Chvátal定理迈进了一步的是Pósa,他改进了狄拉克关于哈密顿圈的严格最小度条件,证明了图的度数序列上的某个较弱的条件已经产生了哈密顿圈。在这项工作中,我们采取了类似的步骤,通过证明Pósa结果的$3$一致模拟,向确保$3$一致超图中紧哈密顿环存在的所有对度矩阵的完整表征。特别地,我们的结果通过Rödl、Ruciński和szemeracimdi加强了结果的渐近版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信