Apostolos N. Konstantopoulos, Sofia Pozoukidou, M. Irakli, I. Tsialtas
{"title":"Testa and hilum colour associations with seed traits of a Greek field pea landrace","authors":"Apostolos N. Konstantopoulos, Sofia Pozoukidou, M. Irakli, I. Tsialtas","doi":"10.1017/s1479262123000527","DOIUrl":null,"url":null,"abstract":"Pea landraces may hold genetic variation that can be exploitable in breeding/selecting new cultivars. In a small-seeded pea landrace, four phenotypes were distinguished according to testa (green, non-spotted and green, spotted) and hilum colour (white, black). The four phenotypes were tested for two growing seasons in the field for pod (seeds/pod) and seed traits (1000-seed weight, toughness, total phenols and tannins, testa colour, protein and carbon concentration, C/N ratio, bruchid infection). Significant differences were found for testa colour parameters, phenolic, tannin and carbon concentration and bruchid tolerance. The larger-seeded, spotted peas had darker testa and more phenols, while white-hilumed peas had lighter testa and more tannins. The spotted, black-hilumed phenotype, with the highest carbon concentration and C/N ratio was the most tolerant to bruchids. However, grouping the phenotypes, neither spotted nor black-hilumed ones showed to be more tolerant compared with their counterparts. Concluding, our results showed that phenotyping variation in seeds of a pea landrace revealed variation in seed traits, which could be exploitable. Since testa and hilum colour were associated with specific seed traits, they could, alone or in combination, be used as biomarkers of seed quality traits in pea. Testing of larger number of phenotypes is needed to solidify our findings.","PeriodicalId":20252,"journal":{"name":"Plant Genetic Resources: Characterization and Utilization","volume":"6 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genetic Resources: Characterization and Utilization","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/s1479262123000527","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Pea landraces may hold genetic variation that can be exploitable in breeding/selecting new cultivars. In a small-seeded pea landrace, four phenotypes were distinguished according to testa (green, non-spotted and green, spotted) and hilum colour (white, black). The four phenotypes were tested for two growing seasons in the field for pod (seeds/pod) and seed traits (1000-seed weight, toughness, total phenols and tannins, testa colour, protein and carbon concentration, C/N ratio, bruchid infection). Significant differences were found for testa colour parameters, phenolic, tannin and carbon concentration and bruchid tolerance. The larger-seeded, spotted peas had darker testa and more phenols, while white-hilumed peas had lighter testa and more tannins. The spotted, black-hilumed phenotype, with the highest carbon concentration and C/N ratio was the most tolerant to bruchids. However, grouping the phenotypes, neither spotted nor black-hilumed ones showed to be more tolerant compared with their counterparts. Concluding, our results showed that phenotyping variation in seeds of a pea landrace revealed variation in seed traits, which could be exploitable. Since testa and hilum colour were associated with specific seed traits, they could, alone or in combination, be used as biomarkers of seed quality traits in pea. Testing of larger number of phenotypes is needed to solidify our findings.
期刊介绍:
Plant Genetic Resources is an international journal which provides a forum for describing the application of novel genomic technologies, as well as their integration with established techniques, towards the understanding of the genetic variation captured in both in situ and ex situ collections of crop and non-crop plants; and for the airing of wider issues relevant to plant germplasm conservation and utilisation. We particularly welcome multi-disciplinary approaches that incorporate both a technical and a socio-economic focus. Technical aspects can cover developments in technologies of potential or demonstrated relevance to the analysis of variation and diversity at the phenotypic and genotypic levels.