Adaptive Design of Personalized Dose-Finding Clinical Trials

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Saeid Delshad, A. Khademi
{"title":"Adaptive Design of Personalized Dose-Finding Clinical Trials","authors":"Saeid Delshad, A. Khademi","doi":"10.1287/serv.2022.0306","DOIUrl":null,"url":null,"abstract":"A key and challenging step toward personalized/precision medicine is the ability to redesign dose-finding clinical trials. This work studies a problem of fully response-adaptive Bayesian design of phase II dose-finding clinical trials with patient information, where the decision maker seeks to identify the right dose for each patient type (often defined as an effective target dose for each group of patients) by minimizing the expected (over patient types) variance of the right dose. We formulate this problem by a stochastic dynamic program and exploit a few properties of this class of learning problems. Because the optimal solution is intractable, we propose an approximate policy by an adaptation of a one-step look-ahead framework. We show the optimality of the proposed policy for a setting with homogeneous patients and two doses and find its asymptotic rate of sampling. We adapt a number of commonly applied allocation policies in dose-finding clinical trials, such as posterior adaptive sampling, and test their performance against our proposed policy via extensive simulations with synthetic and real data. Our numerical analyses provide insights regarding the connection between the structure of the dose-response curve for each patient type and the performance of allocation policies. This paper provides a practical framework for the Food and Drug Administration and pharmaceutical companies to transition from the current phase II procedures to the era of personalized dose-finding clinical trials.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/serv.2022.0306","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

A key and challenging step toward personalized/precision medicine is the ability to redesign dose-finding clinical trials. This work studies a problem of fully response-adaptive Bayesian design of phase II dose-finding clinical trials with patient information, where the decision maker seeks to identify the right dose for each patient type (often defined as an effective target dose for each group of patients) by minimizing the expected (over patient types) variance of the right dose. We formulate this problem by a stochastic dynamic program and exploit a few properties of this class of learning problems. Because the optimal solution is intractable, we propose an approximate policy by an adaptation of a one-step look-ahead framework. We show the optimality of the proposed policy for a setting with homogeneous patients and two doses and find its asymptotic rate of sampling. We adapt a number of commonly applied allocation policies in dose-finding clinical trials, such as posterior adaptive sampling, and test their performance against our proposed policy via extensive simulations with synthetic and real data. Our numerical analyses provide insights regarding the connection between the structure of the dose-response curve for each patient type and the performance of allocation policies. This paper provides a practical framework for the Food and Drug Administration and pharmaceutical companies to transition from the current phase II procedures to the era of personalized dose-finding clinical trials.
个性化剂量寻找临床试验的自适应设计
实现个性化/精准医疗的关键和具有挑战性的一步是重新设计剂量寻找临床试验的能力。这项工作研究了具有患者信息的II期剂量寻找临床试验的完全反应适应贝叶斯设计问题,其中决策者试图通过最小化正确剂量的预期(超过患者类型)方差来确定每种患者类型的正确剂量(通常定义为每组患者的有效目标剂量)。我们用一个随机动态规划来表述这个问题,并利用了这类学习问题的一些性质。由于最优解是难以处理的,我们提出了一个近似的策略,通过一步前瞻性框架的适应。我们展示了所提出的策略的最优性设置具有均匀的病人和两个剂量,并找到了它的渐近抽样率。我们在剂量发现临床试验中采用了许多常用的分配策略,例如后验自适应抽样,并通过合成和真实数据的广泛模拟测试了它们在我们提出的策略下的性能。我们的数值分析提供了关于每种患者类型的剂量-反应曲线结构与分配策略性能之间的联系的见解。本文为食品和药物管理局和制药公司从目前的II期程序过渡到个性化剂量寻找临床试验时代提供了一个实用框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信