{"title":"Adaptive Design of Personalized Dose-Finding Clinical Trials","authors":"Saeid Delshad, A. Khademi","doi":"10.1287/serv.2022.0306","DOIUrl":null,"url":null,"abstract":"A key and challenging step toward personalized/precision medicine is the ability to redesign dose-finding clinical trials. This work studies a problem of fully response-adaptive Bayesian design of phase II dose-finding clinical trials with patient information, where the decision maker seeks to identify the right dose for each patient type (often defined as an effective target dose for each group of patients) by minimizing the expected (over patient types) variance of the right dose. We formulate this problem by a stochastic dynamic program and exploit a few properties of this class of learning problems. Because the optimal solution is intractable, we propose an approximate policy by an adaptation of a one-step look-ahead framework. We show the optimality of the proposed policy for a setting with homogeneous patients and two doses and find its asymptotic rate of sampling. We adapt a number of commonly applied allocation policies in dose-finding clinical trials, such as posterior adaptive sampling, and test their performance against our proposed policy via extensive simulations with synthetic and real data. Our numerical analyses provide insights regarding the connection between the structure of the dose-response curve for each patient type and the performance of allocation policies. This paper provides a practical framework for the Food and Drug Administration and pharmaceutical companies to transition from the current phase II procedures to the era of personalized dose-finding clinical trials.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/serv.2022.0306","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
A key and challenging step toward personalized/precision medicine is the ability to redesign dose-finding clinical trials. This work studies a problem of fully response-adaptive Bayesian design of phase II dose-finding clinical trials with patient information, where the decision maker seeks to identify the right dose for each patient type (often defined as an effective target dose for each group of patients) by minimizing the expected (over patient types) variance of the right dose. We formulate this problem by a stochastic dynamic program and exploit a few properties of this class of learning problems. Because the optimal solution is intractable, we propose an approximate policy by an adaptation of a one-step look-ahead framework. We show the optimality of the proposed policy for a setting with homogeneous patients and two doses and find its asymptotic rate of sampling. We adapt a number of commonly applied allocation policies in dose-finding clinical trials, such as posterior adaptive sampling, and test their performance against our proposed policy via extensive simulations with synthetic and real data. Our numerical analyses provide insights regarding the connection between the structure of the dose-response curve for each patient type and the performance of allocation policies. This paper provides a practical framework for the Food and Drug Administration and pharmaceutical companies to transition from the current phase II procedures to the era of personalized dose-finding clinical trials.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.