Seismic Anisotropy in the upper crust beneath the Sanjiang lateral collision zone in the southeastern margin of the Tibetan Plateau revealed by S wave splitting from a temporary array
{"title":"Seismic Anisotropy in the upper crust beneath the Sanjiang lateral collision zone in the southeastern margin of the Tibetan Plateau revealed by S wave splitting from a temporary array","authors":"Xinyi Li, Yuan Gao","doi":"10.4401/ag-8867","DOIUrl":null,"url":null,"abstract":"The Sanjiang lateral collision zone is a key region to understand the Tibetan Plateau’s tectonic structure and the Tethys-Himalayan’s tectonic evolution. Complex tectonic structures, intense crustal deformation, frequent seismicity, and abundant metal deposits are all present. With the seismic data recorded by a temporary array (SJ-Array) and permanent stations (Nov. 2018 ~ Dec. 2020), this paper adopts the S wave splitting technique to obtain the essential properties of upper crustal anisotropy. In the interested area, it is shown that the dominant polarization of the fast S wave is NNW, with a mean polarization direction of 167.9°. In addition, the study area can be divided into three subzones from the west to the east: A, B, and C, according to the various mean polarizations varying from NNW, NS to NNE. The mean normalized time delay between the two split S waves is 4.0 ms/km, and the range of time delay is from 2.0 to 6.3 ms/km. The largest time delay is located at the east side of the western boundary of the Sichuan-Yunnan rhombus block. Furthermore, there is a strip area of strong anisotropy stretching along the western segment of the Lijiang-Xiaojinhe fault. These all demonstrate the local tectonic differences and indicate that the crustal structure may be strongly controlled by the fault and block boundary strike.","PeriodicalId":50766,"journal":{"name":"Annals of Geophysics","volume":"114 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.4401/ag-8867","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Sanjiang lateral collision zone is a key region to understand the Tibetan Plateau’s tectonic structure and the Tethys-Himalayan’s tectonic evolution. Complex tectonic structures, intense crustal deformation, frequent seismicity, and abundant metal deposits are all present. With the seismic data recorded by a temporary array (SJ-Array) and permanent stations (Nov. 2018 ~ Dec. 2020), this paper adopts the S wave splitting technique to obtain the essential properties of upper crustal anisotropy. In the interested area, it is shown that the dominant polarization of the fast S wave is NNW, with a mean polarization direction of 167.9°. In addition, the study area can be divided into three subzones from the west to the east: A, B, and C, according to the various mean polarizations varying from NNW, NS to NNE. The mean normalized time delay between the two split S waves is 4.0 ms/km, and the range of time delay is from 2.0 to 6.3 ms/km. The largest time delay is located at the east side of the western boundary of the Sichuan-Yunnan rhombus block. Furthermore, there is a strip area of strong anisotropy stretching along the western segment of the Lijiang-Xiaojinhe fault. These all demonstrate the local tectonic differences and indicate that the crustal structure may be strongly controlled by the fault and block boundary strike.
期刊介绍:
Annals of Geophysics is an international, peer-reviewed, open-access, online journal. Annals of Geophysics welcomes contributions on primary research on Seismology, Geodesy, Volcanology, Physics and Chemistry of the Earth, Oceanography and Climatology, Geomagnetism and Paleomagnetism, Geodynamics and Tectonophysics, Physics and Chemistry of the Atmosphere.
It provides:
-Open-access, freely accessible online (authors retain copyright)
-Fast publication times
-Peer review by expert, practicing researchers
-Free of charge publication
-Post-publication tools to indicate quality and impact
-Worldwide media coverage.
Annals of Geophysics is published by Istituto Nazionale di Geofisica e Vulcanologia (INGV), nonprofit public research institution.