Cohen-Macaulay Growing Graphs

IF 0.7 4区 数学 Q2 MATHEMATICS
Safyan Ahmad, Fazal Abbas, Shamsa Kanwal
{"title":"Cohen-Macaulay Growing Graphs","authors":"Safyan Ahmad, Fazal Abbas, Shamsa Kanwal","doi":"10.37236/10908","DOIUrl":null,"url":null,"abstract":"We introduce a new family of simple graphs, so called, growing graphs. We investigate ways to modify a given simple graph G combinatorially to obtain a growing graph. One may obtain infinitely many growing graphs from a single simple graph. We show that a growing graph obtained from any given simple graph is Cohen–Macaulay and every Cohen–Macaulay chordal graph is a growing graph. We also prove that under certain conditions, a graph is growing if and only if its clique complex is grafted and give several equivalent conditions in this case. Our work is inspired by and generalizes a result of Villarreal on the use of whiskers and the work of Faridi on grafting of simplicial complexes.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"50 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/10908","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new family of simple graphs, so called, growing graphs. We investigate ways to modify a given simple graph G combinatorially to obtain a growing graph. One may obtain infinitely many growing graphs from a single simple graph. We show that a growing graph obtained from any given simple graph is Cohen–Macaulay and every Cohen–Macaulay chordal graph is a growing graph. We also prove that under certain conditions, a graph is growing if and only if its clique complex is grafted and give several equivalent conditions in this case. Our work is inspired by and generalizes a result of Villarreal on the use of whiskers and the work of Faridi on grafting of simplicial complexes.
科恩-麦考利生长图
我们引入一种新的简单图族,也就是所谓的增长图。研究了对给定的简单图G进行组合修饰以得到生长图的方法。从一个简单图中可以得到无限多个生长图。我们证明了从任意给定的简单图得到的一个增长图是Cohen-Macaulay,并且每一个Cohen-Macaulay弦图都是一个增长图。我们还证明了在一定条件下,当且仅当团复合体被接枝时图是生长的,并给出了这种情况下的几个等价条件。我们的工作受到Villarreal关于晶须使用的结果和Faridi关于简单配合物接枝的工作的启发和推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信