{"title":"High-resolution sensor array processing in the presence of multiple wideband chirp signals","authors":"A. Gershman, M. Amin, M. Pesavento","doi":"10.1109/ACSSC.2000.910915","DOIUrl":null,"url":null,"abstract":"Estimating the parameters of polynomial-phase and chirp signals in sensor arrays is an important task which is frequently encountered in practical applications. Several authors have approached this problem using the narrow-band setting. In this paper, we present an optimal (maximum likelihood) algorithm for estimating the direction-of-arrival (DOA) and frequency parameters of multiple wideband constant-amplitude polynomial-phase signals. Since the proposed ML estimator is computationally intensive, an approximate solution is considered, originating from the analysis of the likelihood function in the single polynomial-phase signal case. As a result, the so-called polynomial-phase beamformer is obtained. Its simplified version referred to as the chirp beamformer is considered in detail. Explicit expressions for the corresponding Cramer-Rao bound (CRB) are presented as well. The performances of the exact ML algorithm and the chirp beamformer are compared to the CRB.","PeriodicalId":10581,"journal":{"name":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","volume":"154 1","pages":"41-45 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2000.910915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Estimating the parameters of polynomial-phase and chirp signals in sensor arrays is an important task which is frequently encountered in practical applications. Several authors have approached this problem using the narrow-band setting. In this paper, we present an optimal (maximum likelihood) algorithm for estimating the direction-of-arrival (DOA) and frequency parameters of multiple wideband constant-amplitude polynomial-phase signals. Since the proposed ML estimator is computationally intensive, an approximate solution is considered, originating from the analysis of the likelihood function in the single polynomial-phase signal case. As a result, the so-called polynomial-phase beamformer is obtained. Its simplified version referred to as the chirp beamformer is considered in detail. Explicit expressions for the corresponding Cramer-Rao bound (CRB) are presented as well. The performances of the exact ML algorithm and the chirp beamformer are compared to the CRB.