C. Amaral, Alice Marques Diniz, Eugênio Braz Rodrigues Arantes, G. B. dos Santos, J. D. Noronha-Filho, E. M. da Silva
{"title":"Resin-dentin Bond Stability of Experimental 4-META-based Etch-and-rinse Adhesives Solvated by Ethanol or Acetone.","authors":"C. Amaral, Alice Marques Diniz, Eugênio Braz Rodrigues Arantes, G. B. dos Santos, J. D. Noronha-Filho, E. M. da Silva","doi":"10.3290/j.jad.a37200","DOIUrl":null,"url":null,"abstract":"PURPOSE To investigate the influence of 4-META concentration and type of solvent on the degree of conversion (DC%) and resin-dentin bond stability of experimental etch-and-rinse adhesives. MATERIALS AND METHODS Four different concentrations of 4-META (12 wt%, 20 wt%, 30 wt%, 40 wt%) were added to a model adhesive system consisting of TEG-DMA (25 wt%), UDMA (20 wt%), HEMA (30 wt%), water (4 wt%), camphorquinone (0.5 wt%), and tertiary amine (0.5 wt%) dissolved in 20% acetone (A12, A20, A30 and A40) or 20% ethanol (E12, E20, E30 and E40). DC% was evaluated by FT-IR spectroscopy. Human molars were wet ground until the occlusal dentin was exposed, the adhesive systems were applied after 37% phosphoric acid etching, and resin composite buildups were incrementally constructed. After storage in distilled water at 37°C for 24 h, the teeth were cut into resin-dentin beams (cross-sectional area 1 mm2). Microtensile bond strength (μTBS) was evaluated after 24 h, 6 months, and 1 year of water storage at 37°C. The failure mode was categorized as adhesive, mixed, or cohesive. Data were analyzed using ANOVA and Tukey's HSD test (α = 0.05). RESULTS A12 presented the lowest DC% (p < 0.05). All the other adhesive systems showed statistically similar DC% (p > 0.05). All adhesive systems maintained resin-dentin bond stability after 6 months of water storage, while only A40 and E40 maintained it after 1 year. CONCLUSION Irrespective of the type of organic solvent, the incorporation of high concentrations of 4-META (40 wt%) improved the resin-dentin bond stability of the experimental etch-and-rinse adhesive systems over a period of 1 year.","PeriodicalId":94234,"journal":{"name":"The journal of adhesive dentistry","volume":"244 1","pages":"513-520"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of adhesive dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3290/j.jad.a37200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
PURPOSE To investigate the influence of 4-META concentration and type of solvent on the degree of conversion (DC%) and resin-dentin bond stability of experimental etch-and-rinse adhesives. MATERIALS AND METHODS Four different concentrations of 4-META (12 wt%, 20 wt%, 30 wt%, 40 wt%) were added to a model adhesive system consisting of TEG-DMA (25 wt%), UDMA (20 wt%), HEMA (30 wt%), water (4 wt%), camphorquinone (0.5 wt%), and tertiary amine (0.5 wt%) dissolved in 20% acetone (A12, A20, A30 and A40) or 20% ethanol (E12, E20, E30 and E40). DC% was evaluated by FT-IR spectroscopy. Human molars were wet ground until the occlusal dentin was exposed, the adhesive systems were applied after 37% phosphoric acid etching, and resin composite buildups were incrementally constructed. After storage in distilled water at 37°C for 24 h, the teeth were cut into resin-dentin beams (cross-sectional area 1 mm2). Microtensile bond strength (μTBS) was evaluated after 24 h, 6 months, and 1 year of water storage at 37°C. The failure mode was categorized as adhesive, mixed, or cohesive. Data were analyzed using ANOVA and Tukey's HSD test (α = 0.05). RESULTS A12 presented the lowest DC% (p < 0.05). All the other adhesive systems showed statistically similar DC% (p > 0.05). All adhesive systems maintained resin-dentin bond stability after 6 months of water storage, while only A40 and E40 maintained it after 1 year. CONCLUSION Irrespective of the type of organic solvent, the incorporation of high concentrations of 4-META (40 wt%) improved the resin-dentin bond stability of the experimental etch-and-rinse adhesive systems over a period of 1 year.