Cooperative Navigation via Relational Graphs and State Abstraction

Salwa Mostafa;Mohamed K. Abdel-Aziz;Mehdi Bennis
{"title":"Cooperative Navigation via Relational Graphs and State Abstraction","authors":"Salwa Mostafa;Mohamed K. Abdel-Aziz;Mehdi Bennis","doi":"10.1109/LNET.2023.3285295","DOIUrl":null,"url":null,"abstract":"We consider a cooperative-navigation problem in a partially observable MADRL framework. We investigate how agents cooperate to learn a communication protocol given a very large state space while generalizing to a new environment. The proposed solution leverages the notion of structured observation and abstraction, in which the raw-pixel observations are converted into a relational graph that is then used for learning abstraction. Abstraction is performed based on compression using a relational graph autoencoder (RGAE) and a multilayer perceptron (MLP) to remove irrelevant information. The results show the effectiveness of the proposed MLP and RGAE in learning better policies with better generalization capabilities. It is also shown that communication among agents is instrumental in improving the navigation task performance.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"5 4","pages":"184-188"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10149094/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a cooperative-navigation problem in a partially observable MADRL framework. We investigate how agents cooperate to learn a communication protocol given a very large state space while generalizing to a new environment. The proposed solution leverages the notion of structured observation and abstraction, in which the raw-pixel observations are converted into a relational graph that is then used for learning abstraction. Abstraction is performed based on compression using a relational graph autoencoder (RGAE) and a multilayer perceptron (MLP) to remove irrelevant information. The results show the effectiveness of the proposed MLP and RGAE in learning better policies with better generalization capabilities. It is also shown that communication among agents is instrumental in improving the navigation task performance.
通过关系图和状态抽象实现协同导航
我们考虑了部分可观测 MADRL 框架中的合作导航问题。我们研究了在一个非常大的状态空间中,代理如何合作学习通信协议,同时适应新的环境。我们提出的解决方案利用了结构化观测和抽象的概念,将原始像素观测转换成关系图,然后用于学习抽象。抽象是在使用关系图自动编码器(RGAE)和多层感知器(MLP)压缩的基础上进行的,以去除无关信息。结果表明,提议的 MLP 和 RGAE 在学习具有更好泛化能力的更佳策略方面非常有效。结果还表明,代理之间的交流有助于提高导航任务的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信