{"title":"A Nexus-Based Impact Assessment of Rapid Transitions of the Power Sector: The Case of Greece","authors":"Diamantis Koutsandreas","doi":"10.3390/electricity4030016","DOIUrl":null,"url":null,"abstract":"Power system transformation can unleash wide-ranging effects across multiple, frequently interlinked dimensions such as the environment, economy, resource systems, and biodiversity. Consequently, assessing the multidimensional impacts of power system transformation, especially under rapid transitions, has become increasingly important. Nonetheless, there is a gap in the literature when it comes to applying such an analysis to a Mediterranean country facing structural socioeconomic challenges. This paper explores the potential multifaceted implications of rapidly decarbonizing the Greek power sector by 2035, focusing on the local-level consequences. The evaluation criteria encompass the cost-optimal power mix, power costs, land use, biomass utilization, GDP, and employment. In this effort, a technology-rich cost optimization model representing Greece’s power sector is linked to a global Computable General Equilibrium (CGE) macroeconomic model focusing on the Greek economy. The results indicate that a fast decarbonization of the Greek power sector could trigger positive socioeconomic consequences in the short- and medium-term (GDP: +1.70, employees: +59,000 in 2030), although it may induce negative long-term socioeconomic effects due to increased capital investment requirements. Additionally, the impact on land use may only be trivial, with the potential to decrease over time due to the de-escalation of biomass power generation, thereby reducing the risk of harming biodiversity.","PeriodicalId":35642,"journal":{"name":"Electricity Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electricity Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electricity4030016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Power system transformation can unleash wide-ranging effects across multiple, frequently interlinked dimensions such as the environment, economy, resource systems, and biodiversity. Consequently, assessing the multidimensional impacts of power system transformation, especially under rapid transitions, has become increasingly important. Nonetheless, there is a gap in the literature when it comes to applying such an analysis to a Mediterranean country facing structural socioeconomic challenges. This paper explores the potential multifaceted implications of rapidly decarbonizing the Greek power sector by 2035, focusing on the local-level consequences. The evaluation criteria encompass the cost-optimal power mix, power costs, land use, biomass utilization, GDP, and employment. In this effort, a technology-rich cost optimization model representing Greece’s power sector is linked to a global Computable General Equilibrium (CGE) macroeconomic model focusing on the Greek economy. The results indicate that a fast decarbonization of the Greek power sector could trigger positive socioeconomic consequences in the short- and medium-term (GDP: +1.70, employees: +59,000 in 2030), although it may induce negative long-term socioeconomic effects due to increased capital investment requirements. Additionally, the impact on land use may only be trivial, with the potential to decrease over time due to the de-escalation of biomass power generation, thereby reducing the risk of harming biodiversity.
Electricity JournalBusiness, Management and Accounting-Business and International Management
CiteScore
5.80
自引率
0.00%
发文量
95
审稿时长
31 days
期刊介绍:
The Electricity Journal is the leading journal in electric power policy. The journal deals primarily with fuel diversity and the energy mix needed for optimal energy market performance, and therefore covers the full spectrum of energy, from coal, nuclear, natural gas and oil, to renewable energy sources including hydro, solar, geothermal and wind power. Recently, the journal has been publishing in emerging areas including energy storage, microgrid strategies, dynamic pricing, cyber security, climate change, cap and trade, distributed generation, net metering, transmission and generation market dynamics. The Electricity Journal aims to bring together the most thoughtful and influential thinkers globally from across industry, practitioners, government, policymakers and academia. The Editorial Advisory Board is comprised of electric industry thought leaders who have served as regulators, consultants, litigators, and market advocates. Their collective experience helps ensure that the most relevant and thought-provoking issues are presented to our readers, and helps navigate the emerging shape and design of the electricity/energy industry.