{"title":"Deep Attributed Network Embedding by Preserving Structure and Attribute Information","authors":"Richang Hong, Y. He, Le Wu, Yong Ge, Xindong Wu","doi":"10.1109/TSMC.2019.2897152","DOIUrl":null,"url":null,"abstract":"Network embedding aims to learn distributed vector representations of nodes in a network. The problem of network embedding is fundamentally important. It plays crucial roles in many applications, such as node classification, link prediction, and so on. As the real-world networks are often sparse with few observed links, many recent works have utilized the local and global network structure proximity with shallow models for better network embedding. In reality, each node is usually associated with rich attributes. Some attributed network embedding models leveraged the node attributes in these shallow network embedding models to alleviate the data sparsity issue. Nevertheless, the underlying structure of the network is complex. What is more, the connection between the network structure and node attributes is also hidden. Thus, these previous shallow models fail to capture the nonlinear deep information embedded in the attributed network, resulting in the suboptimal embedding results. In this paper, we propose a deep attributed network embedding framework to capture the complex structure and attribute information. Specifically, we first adopt a personalized random walk-based model to capture the interaction between network structure and node attributes from various degrees of proximity. After that, we construct an enhanced matrix representation of the attributed network by summarizing the various degrees of proximity. Then, we design a deep neural network to exploit the nonlinear complex information in the enhanced matrix for network embedding. Thus, the proposed framework could capture the complex attributed network structure by preserving both the various degrees of network structure and node attributes in a unified framework. Finally, empirical experiments show the effectiveness of our proposed framework on a variety of network embedding-based tasks.","PeriodicalId":55007,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","volume":"17 1","pages":"1434-1445"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMC.2019.2897152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
Network embedding aims to learn distributed vector representations of nodes in a network. The problem of network embedding is fundamentally important. It plays crucial roles in many applications, such as node classification, link prediction, and so on. As the real-world networks are often sparse with few observed links, many recent works have utilized the local and global network structure proximity with shallow models for better network embedding. In reality, each node is usually associated with rich attributes. Some attributed network embedding models leveraged the node attributes in these shallow network embedding models to alleviate the data sparsity issue. Nevertheless, the underlying structure of the network is complex. What is more, the connection between the network structure and node attributes is also hidden. Thus, these previous shallow models fail to capture the nonlinear deep information embedded in the attributed network, resulting in the suboptimal embedding results. In this paper, we propose a deep attributed network embedding framework to capture the complex structure and attribute information. Specifically, we first adopt a personalized random walk-based model to capture the interaction between network structure and node attributes from various degrees of proximity. After that, we construct an enhanced matrix representation of the attributed network by summarizing the various degrees of proximity. Then, we design a deep neural network to exploit the nonlinear complex information in the enhanced matrix for network embedding. Thus, the proposed framework could capture the complex attributed network structure by preserving both the various degrees of network structure and node attributes in a unified framework. Finally, empirical experiments show the effectiveness of our proposed framework on a variety of network embedding-based tasks.
期刊介绍:
The scope of the IEEE Transactions on Systems, Man, and Cybernetics: Systems includes the fields of systems engineering. It includes issue formulation, analysis and modeling, decision making, and issue interpretation for any of the systems engineering lifecycle phases associated with the definition, development, and deployment of large systems. In addition, it includes systems management, systems engineering processes, and a variety of systems engineering methods such as optimization, modeling and simulation.