PENERAPAN ALGORITMA APRIORI UNTUK REKOMENDASI BUKU PADA AMIKOM RESOURCE CENTER

Donni Prabowo, Fitria Ramdani
{"title":"PENERAPAN ALGORITMA APRIORI UNTUK REKOMENDASI BUKU PADA AMIKOM RESOURCE CENTER","authors":"Donni Prabowo, Fitria Ramdani","doi":"10.24076/infosjournal.2020v3i1.207","DOIUrl":null,"url":null,"abstract":"Amikom Resource Center each time producing recorded data, the activity is carried out for years so that it makes Big Data. The big data has the opportunity to produce information that can be useful for borrower and library management.One of the data mining techniques that can be used is the Apriori algorithm with the association rules technique. By using book lending transaction data, apriori algorithm will form association rules between books which are then used to determine book recommendations. In addition, the results of apriori analysis can also be used by the library as information to findout which books are often borrowed, the placement of the book layout in the Amikom library.The results showed that the association rules formed from 562 book lending transaction data in November 2019 used a minimum book frequency of 4 or a minimum support value of 0.7% and a minimum confidence of 80% resulting in 10 association rules with all rules having a positive correlation so that it can be used as a reference for giving book recommendations.","PeriodicalId":33057,"journal":{"name":"JOINS Journal of Information System","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOINS Journal of Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24076/infosjournal.2020v3i1.207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Amikom Resource Center each time producing recorded data, the activity is carried out for years so that it makes Big Data. The big data has the opportunity to produce information that can be useful for borrower and library management.One of the data mining techniques that can be used is the Apriori algorithm with the association rules technique. By using book lending transaction data, apriori algorithm will form association rules between books which are then used to determine book recommendations. In addition, the results of apriori analysis can also be used by the library as information to findout which books are often borrowed, the placement of the book layout in the Amikom library.The results showed that the association rules formed from 562 book lending transaction data in November 2019 used a minimum book frequency of 4 or a minimum support value of 0.7% and a minimum confidence of 80% resulting in 10 association rules with all rules having a positive correlation so that it can be used as a reference for giving book recommendations.
Amikom资源中心每次产生记录数据,活动进行多年,使之成为大数据。大数据有机会产生对借款者和图书馆管理有用的信息。可以使用的数据挖掘技术之一是Apriori算法和关联规则技术。apriori算法利用图书借阅交易数据,形成图书之间的关联规则,并据此确定图书推荐。此外,先验分析的结果还可以作为图书馆的信息,找出哪些书是经常借阅的,在Amikom图书馆的图书布局的位置。结果表明,由2019年11月562笔图书借阅交易数据组成的关联规则,最小借阅频次为4,最小支持值为0.7%,最小置信度为80%,得到10条关联规则,所有规则均为正相关,可作为图书推荐的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
9
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信