Low-complexity proportionate algorithms with sparsity-promoting penalties

T. Ferreira, Markus V. S. Lima, P. Diniz, W. Martins
{"title":"Low-complexity proportionate algorithms with sparsity-promoting penalties","authors":"T. Ferreira, Markus V. S. Lima, P. Diniz, W. Martins","doi":"10.1109/ISCAS.2016.7527218","DOIUrl":null,"url":null,"abstract":"There are two main families of algorithms that tackle the problem of sparse system identification: the proportionate family and the one that employs sparsity-promoting penalty functions. Recently, a new approach was proposed with the l0-IPAPA algorithm, which combines proportionate updates with sparsity-promoting penalties. This paper proposes some modifications to the l0-IPAPA algorithm in order to decrease its computational complexity while preserving its good convergence properties. Among these modifications, the inclusion of a data-selection mechanism provides promising results. Some enlightening simulation results are provided in order to verify and compare the performance of the proposed algorithms.","PeriodicalId":6546,"journal":{"name":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"14 1","pages":"253-256"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2016.7527218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

There are two main families of algorithms that tackle the problem of sparse system identification: the proportionate family and the one that employs sparsity-promoting penalty functions. Recently, a new approach was proposed with the l0-IPAPA algorithm, which combines proportionate updates with sparsity-promoting penalties. This paper proposes some modifications to the l0-IPAPA algorithm in order to decrease its computational complexity while preserving its good convergence properties. Among these modifications, the inclusion of a data-selection mechanism provides promising results. Some enlightening simulation results are provided in order to verify and compare the performance of the proposed algorithms.
具有稀疏性提升惩罚的低复杂度比例算法
解决稀疏系统识别问题的算法主要有两大类:比例算法和采用稀疏性促进惩罚函数的算法。最近,提出了一种新的方法- 10 - ipapa算法,该算法将比例更新与稀疏性促进惩罚相结合。本文对10 - ipapa算法进行了一些改进,以降低其计算复杂度,同时保持其良好的收敛性。在这些修改中,包含数据选择机制提供了有希望的结果。为了验证和比较所提出算法的性能,给出了一些具有启发性的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信