An organic quantum battery

J. Quach, K. McGhee, L. Ganzer, D. Rouse, B. Lovett, Erik Gauger, Jonathan Keeling, G. Cerullo, David G Lidzey, T. Virgili
{"title":"An organic quantum battery","authors":"J. Quach, K. McGhee, L. Ganzer, D. Rouse, B. Lovett, Erik Gauger, Jonathan Keeling, G. Cerullo, David G Lidzey, T. Virgili","doi":"10.21203/rs.3.rs-123919/v1","DOIUrl":null,"url":null,"abstract":"\n Quantum batteries harness the unique properties of quantum mechanics to enhance energy storage compared to conventional batteries. In particular, they are predicted to undergo superextensive charging, where batteries with larger capacity actually take less time to charge. Up until now however, they have not been experimentally demonstrated, due to the challenges in quantum coherent control. Here we implement an array of two-level systems coupled to a photonic mode to realise a Dicke quantum battery. Our quantum battery is constructed with a microcavity formed by two dielectric mirrors enclosing a thin film of a fluorescent molecular dye in a polymer matrix. We use ultrafast optical spectroscopy to time resolve the charging dynamics of the quantum battery at femtosecond resolution. We experimentally demonstrate superextensive increases in both charging power and storage capacity, in agreement with our theoretical modelling. We find that decoherence plays an important role in stabilising energy storage, analogous to the role that dissipation plays in photosynthesis. This experimental proof-of-concept is a major milestone towards the practical application of quantum batteries in quantum and conventional devices. Our work opens new opportunities for harnessing collective effects in light-matter coupling for nanoscale energy capture, storage, and transport technologies, including the enhancement of solar cell efficiencies.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-123919/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Quantum batteries harness the unique properties of quantum mechanics to enhance energy storage compared to conventional batteries. In particular, they are predicted to undergo superextensive charging, where batteries with larger capacity actually take less time to charge. Up until now however, they have not been experimentally demonstrated, due to the challenges in quantum coherent control. Here we implement an array of two-level systems coupled to a photonic mode to realise a Dicke quantum battery. Our quantum battery is constructed with a microcavity formed by two dielectric mirrors enclosing a thin film of a fluorescent molecular dye in a polymer matrix. We use ultrafast optical spectroscopy to time resolve the charging dynamics of the quantum battery at femtosecond resolution. We experimentally demonstrate superextensive increases in both charging power and storage capacity, in agreement with our theoretical modelling. We find that decoherence plays an important role in stabilising energy storage, analogous to the role that dissipation plays in photosynthesis. This experimental proof-of-concept is a major milestone towards the practical application of quantum batteries in quantum and conventional devices. Our work opens new opportunities for harnessing collective effects in light-matter coupling for nanoscale energy capture, storage, and transport technologies, including the enhancement of solar cell efficiencies.
有机量子电池
与传统电池相比,量子电池利用量子力学的独特特性来增强能量存储。特别是,电池容量越大,充电时间就会越短,因此预计会出现“超长充电”现象。然而,到目前为止,由于量子相干控制方面的挑战,它们还没有得到实验证明。在这里,我们实现了一组耦合到光子模式的两能级系统来实现Dicke量子电池。我们的量子电池是由两个介电镜在聚合物基质中包裹一层荧光分子染料薄膜形成的微腔构成的。我们利用超快光谱学在飞秒分辨率下对量子电池的充电动力学进行时间解析。我们通过实验证明了充电功率和存储容量的大幅增加,与我们的理论模型一致。我们发现退相干在稳定能量储存中起着重要作用,类似于耗散在光合作用中的作用。这一实验概念验证是量子电池在量子和传统设备中实际应用的一个重要里程碑。我们的工作为利用光物质耦合中的集体效应用于纳米级能量捕获、存储和传输技术,包括提高太阳能电池效率,开辟了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信