Self-organization on Riemannian manifolds

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
R. Fetecau, B. Zhang
{"title":"Self-organization on Riemannian manifolds","authors":"R. Fetecau, B. Zhang","doi":"10.3934/jgm.2019020","DOIUrl":null,"url":null,"abstract":"We consider an aggregation model that consists of an active transport equation for the macroscopic population density, where the velocity has a nonlocal functional dependence on the density, modelled via an interaction potential. We set up the model on general Riemannian manifolds and provide a framework for constructing interaction potentials which lead to equilibria that are constant on their supports. We consider such potentials for two specific cases (the two-dimensional sphere and the two-dimensional hyperbolic space) and investigate analytically and numerically the long-time behaviour and equilibrium solutions of the aggregation model on these manifolds. Equilibria obtained numerically with other interaction potentials are also presented.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2018-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2019020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 20

Abstract

We consider an aggregation model that consists of an active transport equation for the macroscopic population density, where the velocity has a nonlocal functional dependence on the density, modelled via an interaction potential. We set up the model on general Riemannian manifolds and provide a framework for constructing interaction potentials which lead to equilibria that are constant on their supports. We consider such potentials for two specific cases (the two-dimensional sphere and the two-dimensional hyperbolic space) and investigate analytically and numerically the long-time behaviour and equilibrium solutions of the aggregation model on these manifolds. Equilibria obtained numerically with other interaction potentials are also presented.
黎曼流形的自组织
我们考虑了一个由宏观人口密度的主动输运方程组成的聚集模型,其中速度具有非局部函数依赖于密度,通过相互作用势建模。我们在一般黎曼流形上建立了模型,并提供了一个构造相互作用势的框架,这些相互作用势导致在它们的支撑上保持恒定的平衡。我们考虑了两种特定情况下(二维球面和二维双曲空间)的这种势,并研究了这些流形上聚集模型的长期行为和平衡解。文中还给出了其他相互作用势的数值平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometric Mechanics
Journal of Geometric Mechanics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.70
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal: 1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信