Spreading speeds and travelling waves for non-monotone time-delayed 2D lattice systems

Zhi-Xian Yu , Weiguo Zhang , Xiaoming Wang
{"title":"Spreading speeds and travelling waves for non-monotone time-delayed 2D lattice systems","authors":"Zhi-Xian Yu ,&nbsp;Weiguo Zhang ,&nbsp;Xiaoming Wang","doi":"10.1016/j.mcm.2013.06.009","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a non-monotone time delayed 2D lattice system with global interaction is studied. The important feature of the model is the reflection of the joint effect of the diffusion dynamics, the nonlocal delayed effect and the direction of propagation. The existence of travelling waves for the wave speed <span><math><mi>c</mi><mo>≥</mo><msub><mrow><mi>c</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></math></span> is established by Schauder’s fixed point theorem and a limiting argument, where <span><math><mi>θ</mi></math></span> is any fixed direction of propagation. The spreading speed is investigated by comparison arguments and a fluctuation method. It is also shown that the spreading speed coincides with the minimal wave speed along every direction. Particularly, letting the direction of propagation <span><math><mi>θ</mi><mo>=</mo><mn>0</mn></math></span> or <span><math><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, the wave profile equation of the 2D lattice system can reduce to the wave profile equation of 1D lattice system and therefore, our results can cover the previous works.</p></div>","PeriodicalId":49872,"journal":{"name":"Mathematical and Computer Modelling","volume":"58 7","pages":"Pages 1510-1521"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mcm.2013.06.009","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895717713002264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, a non-monotone time delayed 2D lattice system with global interaction is studied. The important feature of the model is the reflection of the joint effect of the diffusion dynamics, the nonlocal delayed effect and the direction of propagation. The existence of travelling waves for the wave speed cc(θ) is established by Schauder’s fixed point theorem and a limiting argument, where θ is any fixed direction of propagation. The spreading speed is investigated by comparison arguments and a fluctuation method. It is also shown that the spreading speed coincides with the minimal wave speed along every direction. Particularly, letting the direction of propagation θ=0 or π2, the wave profile equation of the 2D lattice system can reduce to the wave profile equation of 1D lattice system and therefore, our results can cover the previous works.

非单调时滞二维晶格系统的传播速度和行波
研究了一类具有全局相互作用的非单调时滞二维点阵系统。该模型的重要特征是反映了扩散动力学、非局部延迟效应和传播方向的共同作用。当波速c≥c * (θ)时,行波的存在性由Schauder不动点定理和一个极限参数建立,其中θ是任何固定的传播方向。采用比较参数法和波动法对扩散速度进行了研究。在各个方向上,传播速度与最小波速一致。特别地,当传播方向θ=0或π2时,二维晶格体系的波廓方程可以简化为一维晶格体系的波廓方程,因此,我们的结果可以覆盖之前的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical and Computer Modelling
Mathematical and Computer Modelling 数学-计算机:跨学科应用
自引率
0.00%
发文量
0
审稿时长
9.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信