Mengjie Gao, Shuangyan Ma, Tong Xu, Nan Jiang, Yi Xu, Y. Zhong, Bin Wu
{"title":"The design and synthesis of benzylpiperazine-based edaravone derivatives and their neuroprotective activities","authors":"Mengjie Gao, Shuangyan Ma, Tong Xu, Nan Jiang, Yi Xu, Y. Zhong, Bin Wu","doi":"10.1177/17475198221116827","DOIUrl":null,"url":null,"abstract":"New edaravone derivatives containing a benzylpiperazine moiety are designed and synthesized. The structures are characterized by 1H NMR, 13C NMR, and high-resolution mass spectrometry. The potential neuroprotective activities of the target compounds are evaluated in differentiated rat pheochromocytoma cells (PC12 cells) and in mice subjected to acute cerebral ischemia. Most of the target compounds showed neuroprotective activities both in vivo and in vitro, especially 1-(4-(4-fluorobenzyl) piperazin-1-yl)-2-(4-(5-hydroxy-3-methyl-1H-pyrazol-1-yl)phenoxy)ethanone and 1-(4-(4-nitrobenzyl)piperazin-1-yl)-2-(4-(5-hydroxy-3-methyl-1H-pyrazol-1-yl)phenoxy)ethanone, which displayed significant protective effects on cell viability against damage caused by H2O2, and remarkably prolonged the survival time of mice subjected to acute cerebral ischemia and decreased the mortality rate at all doses. These compounds represent lead compounds for the further discovery of neuroprotective agents for treating cerebral ischemic stroke. Molecular docking studies and basic structure–activity relationships are also presented.","PeriodicalId":15318,"journal":{"name":"Journal of Chemical Research-s","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Research-s","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17475198221116827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
New edaravone derivatives containing a benzylpiperazine moiety are designed and synthesized. The structures are characterized by 1H NMR, 13C NMR, and high-resolution mass spectrometry. The potential neuroprotective activities of the target compounds are evaluated in differentiated rat pheochromocytoma cells (PC12 cells) and in mice subjected to acute cerebral ischemia. Most of the target compounds showed neuroprotective activities both in vivo and in vitro, especially 1-(4-(4-fluorobenzyl) piperazin-1-yl)-2-(4-(5-hydroxy-3-methyl-1H-pyrazol-1-yl)phenoxy)ethanone and 1-(4-(4-nitrobenzyl)piperazin-1-yl)-2-(4-(5-hydroxy-3-methyl-1H-pyrazol-1-yl)phenoxy)ethanone, which displayed significant protective effects on cell viability against damage caused by H2O2, and remarkably prolonged the survival time of mice subjected to acute cerebral ischemia and decreased the mortality rate at all doses. These compounds represent lead compounds for the further discovery of neuroprotective agents for treating cerebral ischemic stroke. Molecular docking studies and basic structure–activity relationships are also presented.
期刊介绍:
The Journal of Chemical Research is a peer reviewed journal that publishes full-length review and research papers in all branches of experimental chemistry. The journal fills a niche by also publishing short papers, a format which favours particular types of work, e.g. the scope of new reagents or methodology, and the elucidation of the structure of novel compounds. Though welcome, short papers should not result in fragmentation of publication, they should describe a completed piece of work. The Journal is not intended as a vehicle for preliminary publications. The work must meet all the normal criteria for acceptance as regards scientific standards. Papers that contain extensive biological results or material relating to other areas of science may be diverted to more appropriate specialist journals. Areas of coverage include: Organic Chemistry; Inorganic Chemistry; Materials Chemistry; Crystallography; Computational Chemistry.