A 681 GOPS/W~3.59 TOPS/W CNN Accelerator Based on Novel Data Flow Scheduling Scheme

Yan Li, Xiaoling Ding, Haichuan Yang, Xuan Zhang, Yu Gong, Bo Liu
{"title":"A 681 GOPS/W~3.59 TOPS/W CNN Accelerator Based on Novel Data Flow Scheduling Scheme","authors":"Yan Li, Xiaoling Ding, Haichuan Yang, Xuan Zhang, Yu Gong, Bo Liu","doi":"10.1109/ICSICT49897.2020.9278238","DOIUrl":null,"url":null,"abstract":"This paper proposes a deep convolutional neural network(CNN) accelerator for image recognition applications based on a novel data flow scheduling scheme. To accelerate the CNN with high energy efficient, we propose two optimization approaches including: the execution time prediction model based on data balance scheduling, and the dynamic voltage control mechanism. The proposed voltage control mechanism can dynamically configure the working frequency of CNN computing and data accessing respectively. To solve the data imbalance between memory and computing, we optimized the architecture based on approximate computing and data scheduling, and implement a data scheduling scheme by optimizing and adjusting the supply voltage of computing arrays. Implemented under TSMC 45nm process, the proposed accelerator for different CNNs can realize 4/8/16bit data bit width computation. Compared with the state-of-the-art CNN accelerators, it performs 2.70~2.83 times better in energy efficiency.","PeriodicalId":6727,"journal":{"name":"2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT)","volume":"95 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSICT49897.2020.9278238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a deep convolutional neural network(CNN) accelerator for image recognition applications based on a novel data flow scheduling scheme. To accelerate the CNN with high energy efficient, we propose two optimization approaches including: the execution time prediction model based on data balance scheduling, and the dynamic voltage control mechanism. The proposed voltage control mechanism can dynamically configure the working frequency of CNN computing and data accessing respectively. To solve the data imbalance between memory and computing, we optimized the architecture based on approximate computing and data scheduling, and implement a data scheduling scheme by optimizing and adjusting the supply voltage of computing arrays. Implemented under TSMC 45nm process, the proposed accelerator for different CNNs can realize 4/8/16bit data bit width computation. Compared with the state-of-the-art CNN accelerators, it performs 2.70~2.83 times better in energy efficiency.
基于新数据流调度方案的681 GOPS/W~3.59 TOPS/W CNN加速器
基于一种新的数据流调度方案,提出了一种用于图像识别的深度卷积神经网络(CNN)加速器。为了提高CNN的高能效,我们提出了两种优化方法:基于数据均衡调度的执行时间预测模型和动态电压控制机制。所提出的电压控制机制可以分别动态配置CNN计算和数据访问的工作频率。为了解决内存和计算之间的数据不平衡问题,我们基于近似计算和数据调度对架构进行了优化,并通过优化和调整计算阵列的供电电压实现了数据调度方案。在台积电45nm制程下实现,针对不同cnn的加速器可以实现4/8/16bit的数据位宽计算。与目前最先进的CNN加速器相比,其能效提高了2.70~2.83倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信