Semantic Trajectory Frequent Pattern Mining Model - The definitions and theorems

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"Semantic Trajectory Frequent Pattern Mining Model - The definitions and theorems","authors":"","doi":"10.4018/ijswis.297031","DOIUrl":null,"url":null,"abstract":"A method for mining frequent patterns of individual user trajectories is proposed based on location semantics. The semantic trajectory is obtained by inverse geocoding and preprocessed to obtain the Top-k candidate frequent location item sets, and then the spatio-temporal sequence intersection and the divide and conquer merge methods are used to convert the frequent iterative calculation of long itemsets into hierarchical sets' regular operations, the superset and subset of frequent sequences are found. This kind of semantic trajectory frequent pattern mining can actively identify and discover potential carpooling needs, and provide higher accuracy for location-based intelligent recommendations such as carpooling and HOV lane travel (High-Occupancy Vehicle Lane). Carpool matching and recommendation based on semantic trajectory in this paper is suitable for single carpooling and relay-ride carpooling. the results of simulation carpooling experiments prove the applicability and efficiency of the method.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"27 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.297031","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A method for mining frequent patterns of individual user trajectories is proposed based on location semantics. The semantic trajectory is obtained by inverse geocoding and preprocessed to obtain the Top-k candidate frequent location item sets, and then the spatio-temporal sequence intersection and the divide and conquer merge methods are used to convert the frequent iterative calculation of long itemsets into hierarchical sets' regular operations, the superset and subset of frequent sequences are found. This kind of semantic trajectory frequent pattern mining can actively identify and discover potential carpooling needs, and provide higher accuracy for location-based intelligent recommendations such as carpooling and HOV lane travel (High-Occupancy Vehicle Lane). Carpool matching and recommendation based on semantic trajectory in this paper is suitable for single carpooling and relay-ride carpooling. the results of simulation carpooling experiments prove the applicability and efficiency of the method.
语义轨迹频繁模式挖掘模型-定义和定理
提出了一种基于位置语义的用户轨迹频繁模式挖掘方法。通过逆地理编码获得语义轨迹,并对其进行预处理,得到Top-k候选频繁位置项集,然后利用时空序列交集和分而征服的归并方法,将长项集的频繁迭代计算转化为层次集的正则运算,得到频繁序列的超集和子集。这种语义轨迹频繁模式挖掘可以主动识别和发现潜在的拼车需求,为拼车和高占用车道(HOV lane)等基于位置的智能推荐提供更高的精度。本文提出的基于语义轨迹的拼车匹配和推荐方法适用于单次拼车和接力拼车。仿真拼车实验结果证明了该方法的适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信