TCAD-Enabled Machine Learning Defect Prediction to Accelerate Advanced Semiconductor Device Failure Analysis

C. Teo, Kain Lu Low, V. Narang, A. Thean
{"title":"TCAD-Enabled Machine Learning Defect Prediction to Accelerate Advanced Semiconductor Device Failure Analysis","authors":"C. Teo, Kain Lu Low, V. Narang, A. Thean","doi":"10.1109/sispad.2019.8870440","DOIUrl":null,"url":null,"abstract":"In this work, we present a unique approach of combining TCAD modelling and machine learning to detect the defect locations of a bridging defect in a single-fin FinFET. The prediction of the defect location is guided by the predictive model consisting of Random Forest algorithm which is trained with the measureable electrical attributes from the I-V. High accuracy in predicting the defect location is achieved by the proposed scheme which can further enhance the FA success rate, expediting the cycle of design to product.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"2 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sispad.2019.8870440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

In this work, we present a unique approach of combining TCAD modelling and machine learning to detect the defect locations of a bridging defect in a single-fin FinFET. The prediction of the defect location is guided by the predictive model consisting of Random Forest algorithm which is trained with the measureable electrical attributes from the I-V. High accuracy in predicting the defect location is achieved by the proposed scheme which can further enhance the FA success rate, expediting the cycle of design to product.
支持tcad的机器学习缺陷预测加速先进半导体器件故障分析
在这项工作中,我们提出了一种结合TCAD建模和机器学习的独特方法来检测单鳍FinFET中桥接缺陷的缺陷位置。缺陷位置的预测由随机森林算法组成的预测模型指导,该模型由可测量的电属性训练而成。该方法对缺陷位置的预测精度较高,进一步提高了缺陷分析的成功率,加快了从设计到产品的周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信