Evaluating Federated Learning Scenarios in a Tumor Classification Application

R. Brum, George Teodoro, Lúcia M. A. Drummond, L. Arantes, Maria Clicia Stelling de Castro, Pierre Sens
{"title":"Evaluating Federated Learning Scenarios in a Tumor Classification Application","authors":"R. Brum, George Teodoro, Lúcia M. A. Drummond, L. Arantes, Maria Clicia Stelling de Castro, Pierre Sens","doi":"10.5753/eradrj.2021.18558","DOIUrl":null,"url":null,"abstract":"Federated Learning is a new area of distributed Machine Learning (ML) that emerged to deal with data privacy concerns. In this approach, each client has access to a local and private dataset. They only exchange the model weights and updates. This paper presents a Federated Learning (FL) approach to a cloud Tumor-Infiltrating Lymphocytes (TIL) application. The results show that the FL approach outperformed the centralized one in all evaluated ML metrics. It also reduced the execution time although the financial cost has increased.","PeriodicalId":52776,"journal":{"name":"Revista da Secao Judiciaria do Rio de Janeiro","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista da Secao Judiciaria do Rio de Janeiro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eradrj.2021.18558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Federated Learning is a new area of distributed Machine Learning (ML) that emerged to deal with data privacy concerns. In this approach, each client has access to a local and private dataset. They only exchange the model weights and updates. This paper presents a Federated Learning (FL) approach to a cloud Tumor-Infiltrating Lymphocytes (TIL) application. The results show that the FL approach outperformed the centralized one in all evaluated ML metrics. It also reduced the execution time although the financial cost has increased.
评估肿瘤分类应用中的联邦学习场景
联邦学习是分布式机器学习(ML)的一个新领域,它的出现是为了处理数据隐私问题。在这种方法中,每个客户端都可以访问本地和私有数据集。它们只交换模型权重和更新。本文提出了一种用于云肿瘤浸润淋巴细胞(TIL)应用的联邦学习(FL)方法。结果表明,FL方法在所有评估的ML指标中都优于集中式方法。虽然增加了财务成本,但也缩短了执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信